Home
Class 12
MATHS
int{1+2tanx(tanx+secx)}^(1//2)dx is equa...

`int{1+2tanx(tanx+secx)}^(1//2)dx` is equal to

A

`log(secx+tanx)+C`

B

`log(secx+tanx)^(1//2)+C`

C

`log secx(secx+tanx)+C`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int{1+2 tan x(tanx+secx)}^(1//2)dx`
`=int{1+2 tan^(2)x+2 tanx secx}^(1//2)dx`
`=int{sec^(2)x+tan^(2)x+2tanx secx}^(1//2)dx`
`=int(secx+tanx)dx`
`=log(secx+tanx)+log secx+C`
`=log secx(secx+tanx)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

inte^(-x)(1-tanx)secx dx is equal to

inte^(tanx)(sinx-secx)dx is equal to

int(1-tanx)(1+tanx)dx

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

int(1-tanx)/(1+tanx)dx=

int((1-tanx)/(1+tanx))^(2)dx=

int 1/(1+tanx) dx

int 1/(1+tanx) dx