Home
Class 12
MATHS
int((4e^x-25)/(2e^x-5))dx=A x+B log/(2e^...

`int((4e^x-25)/(2e^x-5))dx=A x+B log/(2e^x)-5/(+c)` then

A

A = 5 and B = 3

B

A = 5 and B = -3

C

A = -5 and B = 3

D

A = -5 and B = -3

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=int((4e^(x)-25)/(2e^(x)-5))dx`
`=int(4e^(x))/(2e^(x)-5)dx-int(25)/(2e^(x)-5)dx`
`=4int(e^(x))/(2e^(x)-5)dx-25int(e^(-x))/(2-5e^(-x))dx`
Put`" "2e^(x)-5=u and 2-5e^(-x)=v`
`rArr" "2e^(x)dx=du and 5e^(-x)dx=dv`
`rArr" "E^(x)dx=(du)/(2) and e^(-x)dx=(dv)/(5)`
`therefore" "l=4int(du)/(2u)-25int(Du)/(5v)`
`=2log u-5logv+c`
`=2log(2e^(x)-5)-5log(2-5e^(-x))+c`
`=2log(2e^(x)-5)-5log((2e^(x)-5)/(e^(x)))+c`
`=2log(2e^(x)-5)-5log((2e^(x)-5)/(e^(x)))+c`
`=2log(2e^(x)-5)-5log (2e^(x)-5)+5loge^(x)+c`
`=-3log(2e^(x)-5)+5x+c`
`rArr" "I=5x-3log(2e^(x)-5)+c`
But it is given `I=Ax+B log (2e^(x)-5)+c`
`therefore" A"=5 and B=-3`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int((4e^(x)-25)/(2e^(x)-5))dx=Ax+B(log)/(2e^(x))-(5)/(+c)

int(4e^x+4)/(2e^x-8)dx=

int((2e^(x)+5)/(2e^(x)+1))dx=

int(e^(5x)-1)/(e^(2x))dx

int(3e^(2x)+5)/(4e^(2x)-5)dx=

int(2e^(x))/(3+4e^(x))dx=

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________

If int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(2x)-4)+C , then |4A|=