Home
Class 12
MATHS
int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+...

`int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx` is equal to

A

`log a.a^(x+tan^(-1)x)+c`

B

`((x+tan^(-1)x))/(loga)+c`

C

`(a^(x+tan^(-1)x))/(loga)+c`

D

`loga(x+tan^(-1)x)+c`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `l=int((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1)dx`
`"Put "x+tan^(-1)x=t`
`rArr" "(1+(1)/(1+x^(2)))dx=dt`
`rArr" "(2+x^(2))/(1+x^(2))dx=dt`
`therefore" "l=inta^(t)dt=(a^(t))/(loga)+c=(a^(x+tan^(-1)x))/(loga)+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int(tan^(-1)x)/(x^(2))*dx

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int(x^(2))/(x(x^(2)-1))dx is equal to

int(x^(2)+1)/(x)dx is equal to -

int(dx)/(x(x^(2)+1)) is equal to

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int((x+1)^(2))/(x(x^(2)+1))dx is equal to: