Home
Class 12
MATHS
If int(f(x))/(log(sinx))dx=log[log sinx]...

If `int(f(x))/(log(sinx))dx=log[log sinx]+c`, then f(x) is equal to

A

`cot x`

B

`tanx`

C

`sec x`

D

`"cosec x"`

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `int(f(x))/(log(sinx))dx=log[logsinx]+c`
On differentiating both sides, we get
`(f(x))/(log(sinx))=(1)/(log sinx)(d)/(dx)(log sinx)+0`
`rArr" "(f(x))/(log(sinx))=(1)/(log sinx)xx(1)/(sinx)xx(1)/(sinx)xxcosx`
`rArr" "f(x)=cotx`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(cotx)/(log(sinx))dx

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=

If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

int(f'(x))/(f(x)log{f(x)})dx=

int(cos^(3)x)e^(log(sinx))dx=

int(f'(x))/(f(x))dx=log f(x)+c

If int(1)/(sin(x-a)cos(x-a))dx=log[f(x)]+c , then f(x)=

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?