Home
Class 12
MATHS
The value of int(dx)/(x(x^(n)+1)) is equ...

The value of `int(dx)/(x(x^(n)+1))` is equal to

A

`(1)/(n)log((x^(n))/(x^(n)+1))+C`

B

`log((x^(n)+1)/(x^(n)))+C`

C

`(1)/(n)log((x^(n)+1)/(x^(n)))+C`

D

`log((x^(n))/(x^(n)+1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{x(x^n + 1)} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{x(x^n + 1)} \] To simplify this, we can multiply and divide by \( x^{n-1} \): \[ \int \frac{x^{n-1} \, dx}{x^n(x^n + 1)} = \int \frac{dx}{x^n + 1} \] ### Step 2: Substitute Variables Let \( t = x^n \). Then, the differential \( dt = n x^{n-1} \, dx \) or \( dx = \frac{dt}{n x^{n-1}} \). Since \( x = t^{1/n} \), we have \( x^{n-1} = t^{(n-1)/n} \). Thus, we can rewrite \( dx \): \[ dx = \frac{dt}{n t^{(n-1)/n}} \] Substituting this into the integral gives: \[ \int \frac{1}{t + 1} \cdot \frac{dt}{n t^{(n-1)/n}} = \frac{1}{n} \int \frac{dt}{t + 1} \] ### Step 3: Integrate Now we can integrate: \[ \frac{1}{n} \int \frac{dt}{t + 1} = \frac{1}{n} \log |t + 1| + C \] ### Step 4: Substitute Back Recall that \( t = x^n \). Therefore, substituting back gives: \[ \frac{1}{n} \log |x^n + 1| + C \] ### Final Answer Thus, the value of the integral \( \int \frac{dx}{x(x^n + 1)} \) is: \[ \frac{1}{n} \log |x^n + 1| + C \]

To solve the integral \( \int \frac{dx}{x(x^n + 1)} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{x(x^n + 1)} \] To simplify this, we can multiply and divide by \( x^{n-1} \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

int (dx)/(x(x^(2)+1))" equals "

Knowledge Check

  • int(dx)/(x(x^(2)+1)) is equal to

    A
    `log|x|-(1)/(2)log(x^(2)+1)+C`
    B
    `log|x|+(1)/(2)log(x^(2)+1)+C`
    C
    `-log|x|+(1)/(2)log(x^(2)+1)+C`
    D
    `(1)/(2)log|x|+log(x^(2)+1)+C`
  • int(dx)/(x(x^(4)+1)) is equal to

    A
    `(1)/(4)log""(x^(4)+1)/(x^(4))+C`
    B
    `(1)/(4)log""((x^(4))/(x^(4)+1))+C`
    C
    `(1)/(4)log(x^(4)+1)+C`
    D
    none of these
  • The value of int(dx)/(xsqrt(1-x^(3))) is equal to

    A
    `1/3ln |(sqrt(1-x^(2))-1)/(sqrt(1-x^(2))+1)|+C`
    B
    `1/2"ln"|(sqrt(1-x^(2))+1)/(sqrt(1-x^(2))-1)|+C`
    C
    `1/3ln|1/sqrt(1-x^(3))|+C`
    D
    `1/3ln|1-x^(3)|+C`
  • Similar Questions

    Explore conceptually related problems

    int(1)/(x(x^(n)+1))dx

    The value of int(dx)/(x^(2)+x+1) is equal to

    int (dx)/(x(x^7+1)) is equal to

    The value of int(x^(2))/(1+x^(6))dx is equal to

    The value of int_(0)^(1)x^(2)e^(x)dx is equal to