Home
Class 12
MATHS
The value of int cos (logx)dx is...

The value of `int cos (logx)dx` is

A

`(1)/(2)[sin (logx)+cos (logx)]+C`

B

`(x)/(2)[sin(logx)+cos(logx)]+C`

C

`(x)/(2)[sin(logx)-cos (logx)]+C`

D

`(1)/(2)[sin(logx)-cos (logx)]+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `" "l=int cos (logx).1dx" …(i)"`
Use integral by parts,
`l=cos(logx).x -int[-sin (logx)].(1)/(x).xdx`
`=x.cos(logx)+int sin (logx).1dx`
Again on using integration by part,
`=x-cos(logx)+[sin(logx).x-int cos(logx).(1)/(x).xdx]+C`
`=x.cos(logx)+[x sin(logx)-int cos(logx)dx]+C`
`=x {sin(logx)+cos(logx)}-l+C" [from Eq. (i)]"`
`rArr" "l=(x)/(2){sin (logx)+cos(logx)}+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sin(logx)dx .

The value of int(logx)/(x+1)^(2)dx is

To find the value of int(1+logx)/(x)dx , the proper substitution is

int(cos(logx))/(x)dx

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

int 2^(logx) dx = ?

int (logx)^3/(x)dx

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "