Home
Class 12
MATHS
The value of inte^(x)[(1+sinx)/(1+cosx)]...

The value of `inte^(x)[(1+sinx)/(1+cosx)]dx` is equal to

A

`(1)/(2)e^(x)sec.(x)/(2)+C`

B

`e^(x)sec.(x)/(2)+C`

C

`(1)/(2)e^(x)tan.(x)/(2)+C`

D

`e^(x)tan.(x)/(2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{1 + \sin x}{1 + \cos x} = \frac{1 + \sin x}{2 \cos^2 \frac{x}{2}} \quad \text{(since \(1 + \cos x = 2 \cos^2 \frac{x}{2}\))} \] We can express \(1 + \sin x\) using the half-angle identity: \[ 1 + \sin x = 1 + 2 \sin \frac{x}{2} \cos \frac{x}{2} = 1 + 2 \sin \frac{x}{2} \cos \frac{x}{2} \] ### Step 2: Substitute and simplify Now, we can rewrite the integral: \[ \int e^x \left( \frac{1}{2 \cos^2 \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) \, dx \] This simplifies to: \[ \int e^x \left( \frac{1}{2 \cos^2 \frac{x}{2}} + \tan \frac{x}{2} \right) \, dx \] ### Step 3: Break the integral into two parts We can split the integral into two parts: \[ \int e^x \frac{1}{2 \cos^2 \frac{x}{2}} \, dx + \int e^x \tan \frac{x}{2} \, dx \] ### Step 4: Use integration by parts For the second integral, we will use integration by parts. Let: - \( u = \tan \frac{x}{2} \) and \( dv = e^x \, dx \) Then, - \( du = \frac{1}{2 \cos^2 \frac{x}{2}} \, dx \) and \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ e^x \tan \frac{x}{2} - \int e^x \cdot \frac{1}{2 \cos^2 \frac{x}{2}} \, dx \] ### Step 5: Combine results Now we can combine the results: \[ \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx = e^x \tan \frac{x}{2} + C \] ### Final Result Thus, the value of the integral is: \[ \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx = e^x \tan \frac{x}{2} + C \]

To solve the integral \( \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{1 + \sin x}{1 + \cos x} = \frac{1 + \sin x}{2 \cos^2 \frac{x}{2}} \quad \text{(since \(1 + \cos x = 2 \cos^2 \frac{x}{2}\))} \] We can express \(1 + \sin x\) using the half-angle identity: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x+sinx)/(1+cosx)\ dx is equal to

Evaluate int e^(x)((1-sinx)/(1-cosx))dx.

int(e^x(1-sinx))/(1-cosx)dx

The value of int(sqrt(tanx)/(sinx cosx)) dx is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to