Home
Class 12
MATHS
The value of int(1)/(3 sin x -cos x +3)d...

The value of `int(1)/(3 sin x -cos x +3)dx` is equal to

A

`log((tan.(x)/(2)+1)/(2tan.(x)/(2)+1))+C`

B

`(1)/(2)log((2tan.(x)/(2)+1)/(tan.(x)/(2)+1))+C`

C

`log((2log.(x)/(2)+1)/(tan.(x)/(2)+1))+C`

D

`2log((2tan.(x)/(2)+1)/(tan.(x)/(2)+1))+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `" "l=int(dx)/(3sin x- cos x+3)`
`{because sinx=(2tan.(x)/(2))/(1+tan^(2).(x)/(2))and cosx=(1-tan^(2).(x)/(2))/(1+tan^(2).(x)/(2))}`
`l=int(dx)/(3{(2tan.(x)/(2))/(1+tan^(2).(x)/(2))}-{(1-tan^(2).(x)/(2))/(1+tan^(2).(x)/(2))}+3)`
`=int((1+tan^(2).(x)/(2))dx)/(6 tan.(x)/(2)-1+tan^(2).(x)/(2)+3+3 tan^(2).(x)/(2))`
`=int(sec^(2).(x)/(2))/(4tan^(2).(x)/(2)+6tan.(x)/(2)+2)dx`
`" "["let "t=tan.(x)/(2),dt=(1)/(2)sec^(2).(x)/(2)dx]`
`=int(dt)/(2t^(2)+3t+1)=int(dt)/((t+1)(2t+1))`
`=int{(-1)/((t+1))+(2)/((2t+1))}dt" [by partial fraction]"`
`=-log(t+1)+(2)/(2)log(2t+1)+C`
`=(log(2t+1))/((t+1))+C=log((2tan.(x)/(2)+1)/(tan.(x)/(2)+1))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of int(xe^(ln(sin x))-cos x)dx is equal to

int (1)/(sin x(3+2 cos x))dx

int(1)/(sin(x-a)cos(x-b))dx is equal to

int(1)/((3sin x+cos x)^(2))dx

int(1)/(cos x - sin x )dx is equal to

int(1)/(sin x cos x +sqrt(2))dx equals

int 1/(sin^2x cos^2x )dx is equal to: