Home
Class 12
MATHS
The value of int((x^(2)+1))/(x^(4)+x^(2)...

The value of `int((x^(2)+1))/(x^(4)+x^(2)+1)dx` is equal to

A

`(1)/(sqrt3)tan^(-1){(x-1//x)/(sqrt3)}+C`

B

`(1)/(2sqrt3)log{((x-1//x)-sqrt3)/((x-1//x)+sqrt3))}+C`

C

`tan^(-1)((x+1//x)/(sqrt3)+C)`

D

`tan^(-1)((x-1/x)/(sqrt3))+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=int(x^(2)+1)/(x^(4)+x^(2)+1)dx=int((1+(1)/(x^(2))))/(x^(2)+1+(1)/(x^(2)))dx`
`=int((1+(1)/(x^(2))))/((x-(1)/(x))^(2)+(sqrt3)^(2))dx`
`=int(dt)/((sqrt3)^(2)+t^(2))=(1)/(sqrt3)tan^(-1)((t)/(sqrt3))+C`
`" "[" let "t=x-(1)/(x) rArr dt=(1+(1)/(x^(2)))dx]`
`=(1)/(sqrt3)tan^(-1){(1)/(sqrt3)(x-(1)/(x))}+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of int(x^(2)-1)/(x^(4)+1)dx is

int((x+1)^(2))/(x(x^(2)+1))dx is equal to:

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int(x^(4))/(x^(2)+1)dx is equal to

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

The value of int((1+x))/(x(1+x e^(x))^(2))dx , is equal to

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

The value of int sqrt((x-1)/(x+1))(.1)/(x^(2))dx is equal to

int(x^(2-1))/(xsqrt(x^4+3x^2)+1) dx is equal to

int(x^(2))/(x(x^(2)-1))dx is equal to