Home
Class 12
MATHS
int(sqrt(tanx)+sqrt(cotx))dx is equal to...

`int(sqrt(tanx)+sqrt(cotx))dx` is equal to

A

`sqrt2 tan^(-1)((tanx)/(sqrt(2tanx)))+C`

B

`sqrt2 tan^(-1)((tanx-1)/(sqrt(2tanx)))+C`

C

`(tanx)/(sqrt2).tan^(-1)((cotx+1)/(sqrt(2tanx)))+C`

D

`(tanx)/(sqrt2).tan^(-1)((cotx+1)/(sqrt(2tanx)))+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=int((sin x+cosx))/(sqrt(sinx.cosx))dx`
`=int(sqrt2(sinx+cosx))/(sqrt(2sinx.cosx))dx=sqrt2 int(sinx+cosx)/(sqrt(sin2x))dx`
`"Put "sinx-cosx=t`
`rArr" "(cosx+sinx)dx=dt`
`"Also, "sin 2x=(1-t^(2))`
`therefore" "l=sqrt2 int(dt)/(sqrt(1-t^(2)))=sqrt2 sin^(-1)t+C`
`=sqrt2 sin^(-1)(sinx - cosx)+C`
`=sqrt2 sin^(-1)(sinx-cosx)+C`
`=sqrt2 tan^(-1)((tanx-1)/(sqrt(2tanx)))+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

inte^(sqrt(x))dx is equal to

Knowledge Check

  • int(sqrt(tanx)+sqrt(cot x)) dx is equal to

    A
    `sqrt2 sin^(-1)(sin x-cos x)+c`
    B
    `sqrt2 sin^(-1)(sinx+cos x)+c`
    C
    `sqrt2 tan^(-1) (sin x-cos x)+c`
    D
    None of the above
  • int_0^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx is equal to

    A
    `sqrt2pi`
    B
    `pi/2`
    C
    `pi/sqrt2`
    D
    `2pi`
  • int(sqrt(tanx))/(sinxcosx)dx is equal to.

    A
    `2sqrt(tanx)+C`
    B
    `2sqrt(cotx)+C`
    C
    `(sqrt(tanx))/(2)+C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of int(sqrt(tanx)/(sinx cosx)) dx is equal to

    int_0^(pi//2)sqrt(cotx)/(sqrt(cotx)+sqrt(tanx)) dx is equal to :

    int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

    int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals