Home
Class 12
MATHS
int(1)/(16x^(2)+9)dx is equal to...

`int(1)/(16x^(2)+9)dx` is equal to

A

`(1)/(3)tan^(-1)((4x)/(3))+C`

B

`(1)/(4)tan^(-1)((4x)/(3))+C`

C

`(1)/(12)tan^(-1)((4x)/(3))+C`

D

`(1)/(12)tan^(-1)((3x)/(4))+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`int(1)/(16x^(2)+9)dx=(1)/(16)int(1)/(x^(2)+((3)/(4))^(2))dx`
`=(1)/(16)xx(4)/(3)tan^(-1)((x)/(3//4))+C=(1)/(12)tan^(-1)((4x)/(3))+C`
(c) `int[sin(logx)+cos(logx)]dx`
`=int(d)/(dx){x sin(logx)}dx=x sin (logx)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)-9)dx is equal to

int(1)/(4x^(2) +9) dx

int(1)/(x^(2)-9)dx

int(dx)/(16+x^(2))

int(dx)/(16+x^(2))

int(x^(5))/(1-x^(9))dx is equal to

int(1)/(9x^(2)+4)dx

int(1)/(9-4x^(2))dx

int1/sqrt(1-6x-9x^(2))dx is equal to