Home
Class 12
MATHS
int(x+sinx)/(1+cosx) dx is equal to...

`int(x+sinx)/(1+cosx) dx` is equal to

A

`x tan.(x)/(2)+C`

B

`log(1+cosx)+C`

C

`cot.(x)/(2)+C`

D

`log(x+sinx)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=int(x+sinx)/(1+cosx)dx=int((x)/(2)sec^(2).(x)/(2)+tan.(x)/(2))dx`
`=x tan.(x)/(2)-int tan.(x)/(2)dx+int tan.(x)/(2)dx+C`
`=x tan.(x)/(2)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cosx))dx

The value of inte^(x)[(1+sinx)/(1+cosx)]dx is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(1)/(cosx-sinx)dx is equal to

int(sinx)/(sinx-cosx)dx=

int 1/(sinx(1+2cosx)) dx