Home
Class 12
MATHS
intcos^(3)xe^(log(sinx))dx is equal to...

`intcos^(3)xe^(log(sinx))dx` is equal to

A

`(-sinn^(4)x)/(4)+C`

B

`-(cos^(4)x)/(4)+C`

C

`(e^(sinx))/(4)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=int cos^(3)x e^(log sinx)dx=int cos^(3)x sin x dx`
Put `cos x = t rArr - sin x dx = dt`
`therefore" "l=-int t^(3)dt=-(t^(4))/(4)+C=-(cos^(4)x)/(4)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int cos^(3)x.e^(log(sin x)) dx is equal to

int(cos^(3)x)e^(log(sinx))dx=

intcos^3x*e^(logsinx)dx

The value of int(xe^(ln(sin x))-cos x)dx is equal to

xe^(sqrt(sinx))

intx^(3)log x dx is equal to

int(cotx)/(log(sinx))dx

intcos^3(2x+3)dx

int(sinx)/(sinx-a)dx is equal to