Home
Class 12
MATHS
intsqrt((x-1)/(x+1))dx is equal to...

`intsqrt((x-1)/(x+1))dx` is equal to

A

`2sqrt(x^(2)+1)+sin^(-1)x+C`

B

`sqrt(x^(2)-1)-sin^(-1)x+C`

C

`sqrt(x^(2)-1)+sin^(-1)x+C`

D

`(sqrt(x^(2)-1))/(2)+sin^(-1)x+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=intsqrt((x-1)/(x+1))dx`
`rArr" "l=int(x-1)/(sqrt(x^(2)-1))dx=int(x)/(sqrt(x^(2)-1))dx-int(1)/(sqrt(x^(2)-1))dx`
`=sqrt(x^(2)-1)-sin^(-1)x+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

intsqrt((x-a)/(b-x))dx

intsqrt((x)/(1-x^(3)))dx is equal to

intsqrt((a-x)/(a+x))dx

intsqrt((a+x)/(x-a))dx

intsqrt((a-x)/(x))dx=

intsqrt((9-x)/(x))dx=

intsqrt((1+x)/(x))dx

intsqrt(1+sin((x)/(4)))dx is equal to