Home
Class 12
MATHS
int(cosx)/(sqrt(1+sinx))dx is equal to...

`int(cosx)/(sqrt(1+sinx))dx` is equal to

A

`sin.(x)/(2)-cos.(x)/(2)+C`

B

`sin.(x)/(2)+cos.(x)/(2)+C`

C

`2[sin.(x)/(2)-cos.(x)/(2)]+C`

D

`2[sin.(x)/(2)+cos.(x)/(2)]+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos x}{\sqrt{1 + \sin x}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{1 + \sin x} \). Then, squaring both sides gives: \[ t^2 = 1 + \sin x \quad \Rightarrow \quad \sin x = t^2 - 1 \] ### Step 2: Differentiate to find dx Now, we differentiate \( t^2 \): \[ \frac{d}{dx}(t^2) = \frac{d}{dx}(1 + \sin x) \quad \Rightarrow \quad 2t \frac{dt}{dx} = \cos x \] From this, we can express \( dx \): \[ dx = \frac{2t}{\cos x} \, dt \] ### Step 3: Substitute in the integral Now, we substitute \( \sin x \) and \( dx \) into the integral: \[ \int \frac{\cos x}{\sqrt{1 + \sin x}} \, dx = \int \frac{\cos x}{t} \cdot \frac{2t}{\cos x} \, dt \] The \( \cos x \) terms cancel out: \[ = \int 2 \, dt \] ### Step 4: Integrate Now we can easily integrate: \[ \int 2 \, dt = 2t + C \] ### Step 5: Substitute back for t Recall that \( t = \sqrt{1 + \sin x} \): \[ = 2\sqrt{1 + \sin x} + C \] ### Final Answer Thus, the integral \( \int \frac{\cos x}{\sqrt{1 + \sin x}} \, dx \) is equal to: \[ 2\sqrt{1 + \sin x} + C \] ---

To solve the integral \( \int \frac{\cos x}{\sqrt{1 + \sin x}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{1 + \sin x} \). Then, squaring both sides gives: \[ t^2 = 1 + \sin x \quad \Rightarrow \quad \sin x = t^2 - 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int(dx)/(cosx+sqrt3 sinx)dx is equal to

int(cosx-1)/(sinx+1).e^(x)dx is equal to

int(sinx+cosx)/(sqrt(1+sin2x))dx

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

int(1)/(cosx-sinx)dx is equal to