Home
Class 12
MATHS
If the lines (x-1)/2=(y+1)/3=(z-1)/4a n ...

If the lines `(x-1)/2=(y+1)/3=(z-1)/4a n d(x-3)/1=(y-k)/2=z/1` intersect, then find the value of `kdot`

A

`(3)/(2)`

B

`(9)/(2)`

C

`-(2)/(9)`

D

`-(3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given line are `(x-1)/2=(y+1)/3=(z-1)/(4)=lambda ` [say]
`and (x-3)/(1)=(y-k)/2=z/1=mu` [say]
`Rightarrow x=2lambda+1, y=3lambda-1, z=4lambda+1`
`and x=mu+3, y=2mu+k, z=mu` are same
Since the lines intersect, So, they must have a point in common, i.e,
`2lambda+1=mu+3, 3lambda-1=2mu+k, z=mu`
On solving 1st and III rd terms, we get
`lambda=-3/2 and mu=-5`
`therefore k=3lambda-2mu-1`
`Rightarrow k=3 (-(3)/2)-2(-5)-1=9/2`
`therefore k=9/2`
Promotional Banner

Topper's Solved these Questions

  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2(Miscellaneous Problems)|30 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos

Similar Questions

Explore conceptually related problems

If the lines (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect,then find the value of k .

If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1) intersect, then find the value of k

If the lines (x-3)/(2)=(y+1)/(3)=(z-2)/(4)and(x-4)/(2)=(y-k)/(2)=(z)/(1) intersect, then find the value of k.

If the lines (x-1)/2=(y+1)/3=(z-1)/4 and (x-3)/1=(y-k)/2=z/1 intersect then the value of k is (A) 3/2 (B) 9/2 (C) -2/9 (D) -3/2

If the lines (x-1)/2=(y+1)/3=(z-1)/4 and (x-3)/1=(y-k)/2=z/1 intersect then the value of k is (A) 2/9 (B) 9/2 (C) 0 (D) -1

if the lines (x-1)/(2)=(y-1)/(3)=(z-1)/(4) and (x-3)/(2)=(y-k)/(1)=(z)/(1) intersect then the value of k is (a) (1)/(3) (b) (2)/(3)(c)-(1)/(3) (d) 1

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

IF lines (x-1)/(2) =(y+1)/(3) =(z-1)/(4) and x-3 =(y-k) /(2) = z intersect then the value of k is