Home
Class 12
MATHS
Fid the condition if lines x=a y+b ,z=c ...

Fid the condition if lines `x=a y+b ,z=c y+da n dx=a^(prime)y+b^(prime), z=c^(prime)y+d '` are perpendicular.

A

`aa'+c c'=1`

B

`a/a'+c/c'=-1`

C

`(a)/(a')+(c)/(c')=1`

D

aa'+cc'=-1

Text Solution

Verified by Experts

The correct Answer is:
D

Given equation of lines are `x=ay+b, z=cy+d`
and `x=a'y=+b',z=c'y+d'`
These equations can be rewritten as `(x-b)/(a)=(y-0)/(1)=(z-d)/(c) and (x-b')/(a')=(y-0)/(1)=(z-d')/(c')`
These lines will perpendicular, if `aa'+1+c c'=0 [therefore a_(1)a_(2)+b_(1)b_(2)+c_(1)c_(2)=0]`
Promotional Banner

Topper's Solved these Questions

  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2(Miscellaneous Problems)|30 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos

Similar Questions

Explore conceptually related problems

Fid the condition if lines x=ay+b,z=cy+d and x=a'y+b',z=c'y+d are perpendicular.

If the lines x=a_(1)y + b_(1), z=c_(1)y +d_(1) and x=a_(2)y +b_(2), z=c_(2)y + d_(2) are perpendicular, then

If the lines x=ay +b, z=cy+d and x=a'y + b', z=c'y + d' are perpendicular, then

Prove that the lines x=ay +b,z =cy +d and x=a'y +b' z =c'y +a' are perpendicular if aa'+cc' +1=0

The two lines x=ay+b, z=cy+d and x=a'y+b', z=c'y+d' are perpendicular to each other, if

If the abscissae and the ordinates of two point Aa n dB be the roots of a x^2+b x+c=0a n da^(prime)y^2+b^(prime)y=c^(prime)=0 respectively, show that the equation of the circle described on A B as diameter is a a^(prime)(x^2+y^2)+a^(prime)b x+a b^(prime)y+(c a^(prime)+ca)=0.

The two lines x=ay+b,z=cy+d and x=a'y+b',z=c'y+d' will be perpendicularm if and only if

Show the condition that the curves a x^2+b y^2=1 and a^(prime)\ x^2+b^(prime)\ y^2=1 Should intersect orthogonally