Home
Class 12
MATHS
For the lines L1 ; vec a+t(vec b+vec c) ...

For the lines `L_1 ; vec a+t(vec b+vec c) and L_2 ; vec r=vec b+s(vec c+vec a)` then `L_1 and L_2` 1ntersect at

A

a

B

b

C

a b+c

D

a 2b

Text Solution

Verified by Experts

The correct Answer is:
C

Since the lines intersect `therefore a+t(b+c)=b+s(c+a)`
We easily get t=1, s=1
Hence point of intersection is a+b+c.
Promotional Banner

Topper's Solved these Questions

  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2(Miscellaneous Problems)|30 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos

Similar Questions

Explore conceptually related problems

For the lines L_(1);vec a+t(vec b+vec c) and L_(2);vec r=vec b+s(vec c+vec a) then L_(1) and L_(2) ntersect at

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If the lines vec r=x((vec b)/(|vec b|)+(vec c)/(|vec c|)) and vec r=2vec b+y(vec c-vec b) intersect at a point with position vector z((vec b)/(|vec b|)+(vec c)/(|vec c|)), then

If the lines vec r=x((vec b)/(|vec b|)+(vec c)/(|vec c|)) and vec r=2vec b+y(vec c-vec b) intersect at a point with position vector z((vec b)/(|vec b|)+(vec c)/(|vec c|)), then

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

[vec a + vec b, vec b + vec r * vec cvec c + vec a] = 2 [vec with bvec c]

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

Write a vector normal to the plane vec r=l vec b+m vec c

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.