Home
Class 12
MATHS
The length of the perpendicular from P(1...

The length of the perpendicular from P(1,0,2) on the line `(x+1)/(3)=(y-2)/(-2)=(z+1)/(-1)` is

A

`(3sqrt6)/(2)`

B

`(6sqrt3)/(5)`

C

`3sqrt2`

D

`2sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the perpendicular from the point \( P(1, 0, 2) \) to the line given by the equations \( \frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1} \), we can follow these steps: ### Step 1: Parametrize the Line The line can be expressed in parametric form. Let \( t \) be the parameter such that: \[ x = 3t - 1, \quad y = -2t + 2, \quad z = -t - 1 \] This gives us a point on the line as \( M(3t - 1, -2t + 2, -t - 1) \). ### Step 2: Find the Direction Ratios of the Line The direction ratios of the line can be derived from the coefficients of \( t \) in the parametric equations: \[ \text{Direction Ratios} = (3, -2, -1) \] ### Step 3: Find the Direction Ratios of PM The vector \( PM \) from point \( P(1, 0, 2) \) to point \( M(3t - 1, -2t + 2, -t - 1) \) is given by: \[ PM = (3t - 1 - 1, -2t + 2 - 0, -t - 1 - 2) = (3t - 2, -2t + 2, -t - 3) \] ### Step 4: Set Up the Perpendicular Condition Since \( PM \) is perpendicular to the direction ratios of the line, we can use the dot product: \[ (3, -2, -1) \cdot (3t - 2, -2t + 2, -t - 3) = 0 \] Calculating the dot product: \[ 3(3t - 2) + (-2)(-2t + 2) + (-1)(-t - 3) = 0 \] Expanding this gives: \[ 9t - 6 + 4t - 4 + t + 3 = 0 \] Combining like terms: \[ 14t - 7 = 0 \] Solving for \( t \): \[ t = \frac{1}{2} \] ### Step 5: Find the Coordinates of Point M Substituting \( t = \frac{1}{2} \) back into the parametric equations: \[ x = 3\left(\frac{1}{2}\right) - 1 = \frac{3}{2} - 1 = \frac{1}{2} \] \[ y = -2\left(\frac{1}{2}\right) + 2 = -1 + 2 = 1 \] \[ z = -\left(\frac{1}{2}\right) - 1 = -\frac{1}{2} - 1 = -\frac{3}{2} \] Thus, the coordinates of point \( M \) are \( \left(\frac{1}{2}, 1, -\frac{3}{2}\right) \). ### Step 6: Calculate the Length of PM Now we can calculate the length of \( PM \): \[ PM = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] Substituting \( P(1, 0, 2) \) and \( M\left(\frac{1}{2}, 1, -\frac{3}{2}\right) \): \[ PM = \sqrt{\left(\frac{1}{2} - 1\right)^2 + (1 - 0)^2 + \left(-\frac{3}{2} - 2\right)^2} \] Calculating each term: \[ = \sqrt{\left(-\frac{1}{2}\right)^2 + 1^2 + \left(-\frac{7}{2}\right)^2} \] \[ = \sqrt{\frac{1}{4} + 1 + \frac{49}{4}} = \sqrt{\frac{1 + 4 + 49}{4}} = \sqrt{\frac{54}{4}} = \sqrt{\frac{27}{2}} = \frac{3\sqrt{6}}{2} \] ### Final Answer Thus, the length of the perpendicular from point \( P \) to the line is: \[ \frac{3\sqrt{6}}{2} \]

To find the length of the perpendicular from the point \( P(1, 0, 2) \) to the line given by the equations \( \frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1} \), we can follow these steps: ### Step 1: Parametrize the Line The line can be expressed in parametric form. Let \( t \) be the parameter such that: \[ x = 3t - 1, \quad y = -2t + 2, \quad z = -t - 1 \] This gives us a point on the line as \( M(3t - 1, -2t + 2, -t - 1) \). ...
Promotional Banner

Topper's Solved these Questions

  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2(Miscellaneous Problems)|30 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos

Similar Questions

Explore conceptually related problems

The length of the perpendicular from P(1,6,3) to the line x/1=(y-1)/(2)=(z-2)/(3) is

If the length of perpendicular from the point (-1,2,-2) on the line (x+1)/(2)=(y-2)/(-3)=(z+2)/(4) is d then d^(2)

Find the length of the perpendicular from the point (1,2,3) to the line (x-6)/(3)=(y-7)/(2)=(z-7)/(-2)

Find the length of the perpendicular from ( 3,2,1) to the line (x - 7) /(-2) = (y - 7)/(2) = (z - 6 ) /(3) .

The foot of the perpendicular from (2,4,-1) to the line (x+5)/(1)=(y+3)/(4)=(z-6)/(-9) is