Home
Class 12
MATHS
When the square of any odd number, great...

When the square of any odd number, greater than 1, is divided by 8, it always leaves remainder 1 (b) 6 (c) 8 (d) Cannot be determined

Text Solution

Verified by Experts

Let `P(n):(2r+1)^(2n), forall n in N and r in I`.
Step I For `n=1`.
`P(1):(2r+1)^2=4r^2+4r+1=4r(r+1)+1=8p+1,p in I " "[because r(r+1)"is an even integer"]`
Therefore , `P(1)` is true ,
Step II Assume P(n) is true for n=k , then
`P(k):(2r+1)^2k` is divisible by 8 levaes remainder 1.
`rArr P(k)=8m+1,n in I`, where m is a positive integer .
Step III For `n=k+1`. brgt `therefore P(k)=(2r+1)2(k+1)`
`=(2r+1)^(2k)(2r+1)^2`
`=(8m+1)(8p+1)`
`64mp+8(m+p)+1`
`=8(8mp+m+p)+1`
which is true for `n=k+1` as `8mp+m+p` is an integer. Hence , by the principle of mathematical induction, when P(n) is divided by 8 leaves the ramainder 1 for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

The remainder when the square of any prime number greater than 3 is divided by 6 is

(9^(6)+1) when divided by 8,would leave a remainder of 0(b)1(c)2(d)3

(7^75-1) when divided by 8 would leave a remainder of:

9^(6)-11 when divided by 8 would leave a remainder of:

If the square of an odd natural number is divisible by 8, then the remainder will be 1 (b) 2 (c) 3 (d) 4

If n is a whole number greater than 1, then n^(2)(n^(2)-1) is always divisible by 8 (b) 10 (c) 12 (d) 16

The least number which when divided by 5 6 7 and 8 leaves a remainder 3 is

ARIHANT MATHS-MATHEMATICAL INDUCTION -Exercise (Subjective Type Questions)
  1. Prove the following by the principle of mathematical induction:\ 11...

    Text Solution

    |

  2. n^7-n is divisible by 42 .

    Text Solution

    |

  3. 3^(2n)+24n-1 is divisible by 32 .

    Text Solution

    |

  4. prove using mathematical induction:-n(n+1)(n+5) is divisible by 6 for ...

    Text Solution

    |

  5. Prove that (25)^(n+1)-24n+5735 is divisible by (24)^2 for all n=1,2,

    Text Solution

    |

  6. x^(2n-1)+y^(2n-1) is divisible by x+y

    Text Solution

    |

  7. Prove by induction that if n is a positive integer not divisible by 3....

    Text Solution

    |

  8. prove that the product of three consecutive positive integers is divis...

    Text Solution

    |

  9. Prove by induction that the sum of the cubes of three consecutive n...

    Text Solution

    |

  10. When the square of any odd number, greater than 1, is divided by 8,...

    Text Solution

    |

  11. Prove the following by using iduction for all n in N. 1+2+3+.....+n=(...

    Text Solution

    |

  12. 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

    Text Solution

    |

  13. 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

    Text Solution

    |

  14. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  15. Prove 1.4.7+2.5.8+3.6.9+....... upto n terms =(n)/(4)(n+1)(n+6)(n+7)

    Text Solution

    |

  16. 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(...

    Text Solution

    |

  17. Let a(0)=2,a1=5 and for n ge 2, an=5a(n-1)-6a(n-2), then prove by indu...

    Text Solution

    |

  18. If a(1)=1,a(n+1)=(1)/(n+1)a(n),a ge1, then prove by induction that a(n...

    Text Solution

    |

  19. if a,b,c,d,e and f are six real numbers such that a+b+c=d+e+f a^2+b^2...

    Text Solution

    |

  20. Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+ta...

    Text Solution

    |