Home
Class 10
MATHS
In the adjoining figure, seg XY|| seg AC...

In the adjoining figure, seg `XY||` seg `AC`, IF `3AX=2BX` and `XY=9` then find the length of `AC`.

Text Solution

Verified by Experts

`3AX=2BX`
`:.(AX)/(BX)=(2)/(3)`
By componendo, we get
`(AX+BX)/(BX)=(2+3)/(3)`
`(AB)/(BX)=(5)/(3)`
`:.` by invertendo, we get
`(BX)/(AB)=(3)/(5)`……`(1)`
In `DeltaBXY` and `DeltaBAC` ,
`/_BXY~=/_BAC`…….(Corresponding angles)
`/_XBY~=/_ABC`.......(Common angle)
`:.DeltaBXY~DeltaBAC`......("AA" test of similarity)
`:.(BX)/(AB)=(XY)/(AC)`......(Corresponding sides of similar triangle)
`:.(3)/(5)=(9)/(AC)`........[From `(1)`]
`:.3xxAC=9xx5`
`:.AC=(9xx5)/(3)`
`AC=15`
Promotional Banner

Topper's Solved these Questions

  • SIMILARITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 2.5 (4 mark each)|3 Videos
  • SIMILARITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLE TYPE|50 Videos
  • SIMILARITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 2.3 (2 mark each)|10 Videos
  • QUADRATIC EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise ASSIGNEMENT 2.4|8 Videos
  • STATISTICS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE (MCQs)|35 Videos

Similar Questions

Explore conceptually related problems

In the adoining figure, XY abs() seg AC. If 2 AX = 3 BX and XY = 9, find the value of AC.

In the adjoining figure,find AC.( FIGURE )

In figure XY|| seg AC. If 2AX=3BX and XY=9 , complete the activity to find the value of AC. Activity: 2AX=3BX :.(AX)/(BX)=(square)/(square) :.(AX+BX)/(BX)=(square+square)/(square) .........(By componendo) :.(AB)/(BX)=(square)/(square) .............1 DeltaBCA~DeltaBYX .......( square test of similarity) :.(BA)/(BX)=(AC)/(XY) ..............(Corresponding sides of similar triangles) :.(square)/(square)=(AC)/9 :.AC=square ...........[From 1]

In the adjoining figure, AB=AC .Find the value of x

In the adjoining figure, seg XY abs() seg BC, then which of the following statements is true?

In the adjoining figure, seg EF abs() side AC, AB = 18, AE = 10, BF = 4. Find BC.

Point M is midpoint of seg AB. If AB =9 cm then find the length of AM.

point C is the midpoint of seg AB. If AC = 5.5, then find the length of AB.

In the adjoining figure, seg PA , seg QB, seg RC and seg SD are perpendicular to line AD. AB = 60, BC = 70, CD = 80, PS = 280, then find PQ, QR and RS.

In the adjoining figure, seg PQ abs() seg DE, A(DeltaPQF) = 20 sq. uints, PF = 2 DP, then find A (square DPQE) by completing the following activity.