Home
Class 12
MATHS
Which one of the following vectors is a ...

Which one of the following vectors is a magnitude 6 and perpendicular to both `a=2hati+2hatj+hatk and b=hati-2hatj+2hatk`?

A

`2hati-hatj-2hatk`

B

`2(2hati-hatj+2hatk)`

C

`3(2hati-hatj-2hatk)`

D

`2(2hati-hatj-2hatk)`

Text Solution

Verified by Experts

The correct Answer is:
D

Now , `axxb=|{:(hat(i),hat(j),hat(k)),(2,2,1),(1,-2,2):}|=hat(i)(4+2)-hat(j)(4-1)+hat(k)(-4-2)`
`6hat(i)-3hat(j)-6hat(k)`
`|axxb|=sqrt(36+9+36)=sqrt(81)=9`
`therefore` Requried vectors are `+-6|(axxb)/(|axxb||)|=+-(6)/(9)(6hat(i)-3hat(j)-6hat(k))=+-2(2hat(i)-hat(j)-2hat(k))`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise (VECTORS ) Exercise 2 ( Topical problems )|88 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

Find a vector of magnitude 6 which is perpendicular to both the vectors 2 hati - hatj + 2hatk and 4 hati - hatj + 3hatk.

Find a vector of magnitude 6, which is perpendicular to both the vectors 2hati-hatj+2hatkand4hati-hatj+3hatk .

Determine a unit vecor perpendicular to both vec(A) = 2 hati +hatj +hatk and vec(B) = hati - hatj +2hatk

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

The vector of magnitude 9 unit perpencular to the vectors 4 hati - hatj +3hatk and-2 hati + hatj - 2hatk will be

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

A unit vector perpendicular to both the vectors 2hati-2hatj+hatk and 3hati+4hatj-5hatk , is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -( MHT CET Corner)
  1. Which one of the following vectors is a magnitude 6 and perpendicular ...

    Text Solution

    |

  2. If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(...

    Text Solution

    |

  3. If M and N are the mid-points of the diagonals AC and BD respectively ...

    Text Solution

    |

  4. If G(barg), H(barh) and P(barp) are centroid, orthocenter and circumce...

    Text Solution

    |

  5. If a=hat(i)+hat(j)+hat(k), b=2hat(i)+lambda hat(j)+hat(k), c=hat(i)-ha...

    Text Solution

    |

  6. If the position vectors of the vertices A, B and C are 6i, 6j ...

    Text Solution

    |

  7. If three vectors 2hat(i)-hat(j)-hat(k), hat(i)+2hat(j)-3hat(k) and 3ha...

    Text Solution

    |

  8. Find a vector of magnitude 9, which is perpendicular to both vectors 4...

    Text Solution

    |

  9. If in a Delta ABC, O and O' are the incentre and orthocentre respectiv...

    Text Solution

    |

  10. If a+b+c=0 and |a|=5, |b|=3 and |c|=7, then angle between a and b is

    Text Solution

    |

  11. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |

  12. If a, b, c are linearly independent vectors and delta =|(a,b,c),(a.a,a...

    Text Solution

    |

  13. If veca,vecb,vecc are three non- coplanar vectors and vecp,vecq,vecr a...

    Text Solution

    |

  14. The volume of a parallelopiped whose coterminous edges are 2veca , 2ve...

    Text Solution

    |

  15. The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), h...

    Text Solution

    |

  16. Given p=3hat(i)+2hat(j)+4hat(k), a=hat(i)+hat(j), b=hat(j)+hat(k), c=h...

    Text Solution

    |

  17. Volume of the parallelopiped having vertices at O-=(0,0,0) , A-=(2,-2...

    Text Solution

    |

  18. If 2veca+ 3vecb-5 vecc=vec0, then ratio in which vecc divides vec...

    Text Solution

    |

  19. If the constant forces 2hati-5hatj+6hatk and -hati+2hatj-hatk act on a...

    Text Solution

    |

  20. If the vectors hat(i)-3hat(j)+2hat(k), -hat(i)+2hat(j) represent the d...

    Text Solution

    |

  21. If |vec(a)|=2,|vec(b)|=3andvec(a),vec(b) are mutually perpendicular, t...

    Text Solution

    |