Home
Class 12
MATHS
If a and b are unit vectors, then what i...

If a and b are unit vectors, then what is the angle between a and b for `sqrt3a-b` to be a unit vector?

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the angle between two unit vectors \( \mathbf{a} \) and \( \mathbf{b} \) such that the vector \( \sqrt{3}\mathbf{a} - \mathbf{b} \) is also a unit vector. ### Step-by-step Solution: 1. **Understanding the Conditions**: Since \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors, we have: \[ |\mathbf{a}| = 1 \quad \text{and} \quad |\mathbf{b}| = 1 \] We also know that \( |\sqrt{3}\mathbf{a} - \mathbf{b}| = 1 \). 2. **Setting Up the Magnitude Equation**: We can express the magnitude of \( \sqrt{3}\mathbf{a} - \mathbf{b} \) as follows: \[ |\sqrt{3}\mathbf{a} - \mathbf{b}|^2 = 1^2 = 1 \] 3. **Expanding the Magnitude**: Using the properties of magnitudes, we expand the left side: \[ |\sqrt{3}\mathbf{a} - \mathbf{b}|^2 = (\sqrt{3}\mathbf{a} - \mathbf{b}) \cdot (\sqrt{3}\mathbf{a} - \mathbf{b}) \] This expands to: \[ (\sqrt{3}\mathbf{a}) \cdot (\sqrt{3}\mathbf{a}) - 2(\sqrt{3}\mathbf{a}) \cdot \mathbf{b} + (\mathbf{b}) \cdot (\mathbf{b}) \] Simplifying this, we get: \[ 3|\mathbf{a}|^2 - 2\sqrt{3}(\mathbf{a} \cdot \mathbf{b}) + |\mathbf{b}|^2 \] 4. **Substituting the Magnitudes**: Since both \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors: \[ 3(1) - 2\sqrt{3}(\mathbf{a} \cdot \mathbf{b}) + 1 = 1 \] This simplifies to: \[ 3 - 2\sqrt{3}(\mathbf{a} \cdot \mathbf{b}) + 1 = 1 \] Therefore: \[ 4 - 2\sqrt{3}(\mathbf{a} \cdot \mathbf{b}) = 1 \] 5. **Rearranging the Equation**: Rearranging gives us: \[ 2\sqrt{3}(\mathbf{a} \cdot \mathbf{b}) = 4 - 1 \] \[ 2\sqrt{3}(\mathbf{a} \cdot \mathbf{b}) = 3 \] Dividing both sides by \( 2\sqrt{3} \): \[ \mathbf{a} \cdot \mathbf{b} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \] 6. **Finding the Angle**: The dot product of two vectors is given by: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta \] Since both are unit vectors: \[ \mathbf{a} \cdot \mathbf{b} = \cos\theta \] Thus: \[ \cos\theta = \frac{\sqrt{3}}{2} \] 7. **Calculating the Angle**: The angle \( \theta \) for which \( \cos\theta = \frac{\sqrt{3}}{2} \) is: \[ \theta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \text{ radians} \quad \text{or} \quad 30^\circ \] ### Final Answer: The angle between the unit vectors \( \mathbf{a} \) and \( \mathbf{b} \) is \( \frac{\pi}{6} \) radians or \( 30^\circ \).

To solve the problem, we need to determine the angle between two unit vectors \( \mathbf{a} \) and \( \mathbf{b} \) such that the vector \( \sqrt{3}\mathbf{a} - \mathbf{b} \) is also a unit vector. ### Step-by-step Solution: 1. **Understanding the Conditions**: Since \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors, we have: \[ |\mathbf{a}| = 1 \quad \text{and} \quad |\mathbf{b}| = 1 ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise (VECTORS ) Exercise 2 ( Topical problems )|88 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If a and b are unit vectors and theta is the angle between them then a-b will be a unit vector if

If vec a and vec b are unit Vectors,then what is the angle between vec a and vec b so that sqrt(2)vec a-vec b is a unit vector?

If vec a and vec b are unit vectors,and theta is the angle between them,then |vec a-vec b|=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -( MHT CET Corner)
  1. If a and b are unit vectors, then what is the angle between a and b fo...

    Text Solution

    |

  2. If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(...

    Text Solution

    |

  3. If M and N are the mid-points of the diagonals AC and BD respectively ...

    Text Solution

    |

  4. If G(barg), H(barh) and P(barp) are centroid, orthocenter and circumce...

    Text Solution

    |

  5. If a=hat(i)+hat(j)+hat(k), b=2hat(i)+lambda hat(j)+hat(k), c=hat(i)-ha...

    Text Solution

    |

  6. If the position vectors of the vertices A, B and C are 6i, 6j ...

    Text Solution

    |

  7. If three vectors 2hat(i)-hat(j)-hat(k), hat(i)+2hat(j)-3hat(k) and 3ha...

    Text Solution

    |

  8. Find a vector of magnitude 9, which is perpendicular to both vectors 4...

    Text Solution

    |

  9. If in a Delta ABC, O and O' are the incentre and orthocentre respectiv...

    Text Solution

    |

  10. If a+b+c=0 and |a|=5, |b|=3 and |c|=7, then angle between a and b is

    Text Solution

    |

  11. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |

  12. If a, b, c are linearly independent vectors and delta =|(a,b,c),(a.a,a...

    Text Solution

    |

  13. If veca,vecb,vecc are three non- coplanar vectors and vecp,vecq,vecr a...

    Text Solution

    |

  14. The volume of a parallelopiped whose coterminous edges are 2veca , 2ve...

    Text Solution

    |

  15. The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), h...

    Text Solution

    |

  16. Given p=3hat(i)+2hat(j)+4hat(k), a=hat(i)+hat(j), b=hat(j)+hat(k), c=h...

    Text Solution

    |

  17. Volume of the parallelopiped having vertices at O-=(0,0,0) , A-=(2,-2...

    Text Solution

    |

  18. If 2veca+ 3vecb-5 vecc=vec0, then ratio in which vecc divides vec...

    Text Solution

    |

  19. If the constant forces 2hati-5hatj+6hatk and -hati+2hatj-hatk act on a...

    Text Solution

    |

  20. If the vectors hat(i)-3hat(j)+2hat(k), -hat(i)+2hat(j) represent the d...

    Text Solution

    |

  21. If |vec(a)|=2,|vec(b)|=3andvec(a),vec(b) are mutually perpendicular, t...

    Text Solution

    |