Home
Class 12
MATHS
Vectors a and b are such that |a|=1,|b|=...

Vectors a and b are such that `|a|=1,|b|=4 and a.b=2." If " c=2axxb-3b`, then the angle between b and c is

A

`(pi)/(6)`

B

`(5pi)/(6)`

C

`(pi)/(3)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the angle between the vectors \( \mathbf{b} \) and \( \mathbf{c} \), where \( \mathbf{c} = 2 \mathbf{a} \times \mathbf{b} - 3 \mathbf{b} \). ### Step 1: Given Information We have: - \( |\mathbf{a}| = 1 \) - \( |\mathbf{b}| = 4 \) - \( \mathbf{a} \cdot \mathbf{b} = 2 \) ### Step 2: Find the Angle \( \theta \) Between \( \mathbf{a} \) and \( \mathbf{b} \) Using the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \] Substituting the known values: \[ 2 = 1 \cdot 4 \cdot \cos \theta \] \[ \cos \theta = \frac{2}{4} = \frac{1}{2} \] Thus, \( \theta = 60^\circ \). ### Step 3: Find \( |\mathbf{a} \times \mathbf{b}| \) Using the cross product formula: \[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta \] Substituting the known values: \[ |\mathbf{a} \times \mathbf{b}| = 1 \cdot 4 \cdot \sin(60^\circ) = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \] ### Step 4: Calculate \( |\mathbf{a} \times \mathbf{b}|^2 \) \[ |\mathbf{a} \times \mathbf{b}|^2 = (2\sqrt{3})^2 = 12 \] ### Step 5: Find \( |\mathbf{c}|^2 \) Using the expression for \( \mathbf{c} \): \[ \mathbf{c} = 2(\mathbf{a} \times \mathbf{b}) - 3\mathbf{b} \] Calculating \( |\mathbf{c}|^2 \): \[ |\mathbf{c}|^2 = |2(\mathbf{a} \times \mathbf{b}) - 3\mathbf{b}|^2 \] Using the formula \( |\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} \): \[ |\mathbf{c}|^2 = |2(\mathbf{a} \times \mathbf{b})|^2 + |-3\mathbf{b}|^2 - 2(2(\mathbf{a} \times \mathbf{b})) \cdot (-3\mathbf{b}) \] Calculating each term: \[ |2(\mathbf{a} \times \mathbf{b})|^2 = 4 \cdot 12 = 48 \] \[ |-3\mathbf{b}|^2 = 9 \cdot 16 = 144 \] The dot product \( 2(\mathbf{a} \times \mathbf{b}) \cdot (-3\mathbf{b}) = 0 \) because \( \mathbf{a} \times \mathbf{b} \) is perpendicular to \( \mathbf{b} \). Thus: \[ |\mathbf{c}|^2 = 48 + 144 = 192 \] ### Step 6: Find the Angle \( \phi \) Between \( \mathbf{b} \) and \( \mathbf{c} \) Using the formula: \[ \mathbf{b} \cdot \mathbf{c} = |\mathbf{b}| |\mathbf{c}| \cos \phi \] Calculating \( \mathbf{b} \cdot \mathbf{c} \): \[ \mathbf{b} \cdot \mathbf{c} = \mathbf{b} \cdot (2(\mathbf{a} \times \mathbf{b}) - 3\mathbf{b}) = 2\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) - 3|\mathbf{b}|^2 \] The first term is zero (as \( \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = 0 \)): \[ \mathbf{b} \cdot \mathbf{c} = -3 \cdot 16 = -48 \] Now substituting into the angle formula: \[ -48 = 4 \cdot \sqrt{192} \cos \phi \] Calculating \( \sqrt{192} = 8\sqrt{3} \): \[ -48 = 4 \cdot 8\sqrt{3} \cos \phi \] \[ -48 = 32\sqrt{3} \cos \phi \] \[ \cos \phi = -\frac{48}{32\sqrt{3}} = -\frac{3}{2\sqrt{3}} = -\frac{\sqrt{3}}{2} \] ### Final Step: Determine \( \phi \) The angle \( \phi \) corresponds to: \[ \phi = 150^\circ \quad \text{(since } \cos(150^\circ) = -\frac{\sqrt{3}}{2}\text{)} \] Thus, the angle between \( \mathbf{b} \) and \( \mathbf{c} \) is \( 150^\circ \).

To solve the problem step by step, we need to find the angle between the vectors \( \mathbf{b} \) and \( \mathbf{c} \), where \( \mathbf{c} = 2 \mathbf{a} \times \mathbf{b} - 3 \mathbf{b} \). ### Step 1: Given Information We have: - \( |\mathbf{a}| = 1 \) - \( |\mathbf{b}| = 4 \) - \( \mathbf{a} \cdot \mathbf{b} = 2 \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If A.B=AxxB , then angle between A and B is

If a and b are two vectos such that a.b lt 0 and |a.b|=|axxb| , then the angle between a and b is

The vector a,b and c are such tha |a|=|b|=1 and |c|=2 (ii) a xx(a xx c)+b=0 find the possible angles between a and c.

Two vectors A and B are such that A+B = C and A^2 +B^2 = C^2 . If theta is the angle between positive direction of A and B , then the correct statement is

If a+b+c=0" and "abs(a)=3, abs(b)=5" and "abs(c)=7 then the angle between a and b is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -(VECTORS ) Exercise 2 ( Topical problems )
  1. If vec a , a n d vec b are unit vectors , then find the greatest v...

    Text Solution

    |

  2. If a,b,c ar enon-coplanar vectors and lamda is a real number, then the...

    Text Solution

    |

  3. Vectors a and b are such that |a|=1,|b|=4 and a.b=2." If " c=2axxb-3b,...

    Text Solution

    |

  4. Three vectors a=hati+hatj-hatk, b=-hati+2hatj+hatk and c=-hati+2hatj-h...

    Text Solution

    |

  5. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  6. Let a=a(1)hati+a(3)hatk, b=b(1)hati+b(3)hatk, c=c(1)hati+c(2)hatj+c(3)...

    Text Solution

    |

  7. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  8. If sum of two unit vectors is a unit vector; prove that the magnitude ...

    Text Solution

    |

  9. The three vectors a, b and c with magnitude 3, 4 and 5 respectively an...

    Text Solution

    |

  10. The vectors (a,a+1, a+2)(a+3, a+4, a+5)(a+6, a+7, a+8) are coplanar fo...

    Text Solution

    |

  11. If a=hati+2hatk+3hatk, b=-hati+2hatj = hatk and c=3hati+hatj, then p s...

    Text Solution

    |

  12. Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk andvecc= hathatj-h...

    Text Solution

    |

  13. If a=lambdahati+2hatj-3hatk, b=2hati+lambdahatj-hatk, c=hati+2hatj+hat...

    Text Solution

    |

  14. Three point A, B and C with position vectors a(1)=3hati-2hatj-hatk, a(...

    Text Solution

    |

  15. If a and b are two vectos such that a.b lt 0 and |a.b|=|axxb|, then th...

    Text Solution

    |

  16. If the position vectors off A,B,C and D are 2hati+hatj,hati-3hatj,3hat...

    Text Solution

    |

  17. The vectors a=2hati+hatj-2hatk, b=hati+hatj. If c is a vector such tha...

    Text Solution

    |

  18. If [[axxb,bxxc, c xxa]]=lambda[[a, b, c]]^(2), then lambda is equal t...

    Text Solution

    |

  19. The vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the ...

    Text Solution

    |

  20. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |