Home
Class 12
MATHS
The vectors vec(AB)=3hati+4hatk and vec(...

The vectors `vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk` are the sides of a triangle ABC. The length of the median through A is (A) `sqrt(72)` (B) `sqrt(33)` (C) `sqrt(2880` (D) `sqrt(18)`

A

`sqrt(18)`

B

`sqrt(72)`

C

`sqrt(33)`

D

`sqrt(45)`

Text Solution

Verified by Experts

The correct Answer is:
C

We know that, the sum of three vectors of a triangle is zero.
`therefore AB+BC=CA=0`
`rArr BC=AC-AB`
`rArr BM=(AC-AB)/(2) `[since, M is mid-point of BC]

Also, `AB+BM+MA=0 ` [ property of triangle]
`rArr AB+(AC-AB)/(2) =AM`
`rArr AM=(AB+AC)/(2) = AM`
`rArr AM=(AB+AC)/(2) = (3 hati+4hatk+5hati-2hatj+4hatk)/(2)`
`=4hati - hatj +4 hatk`
`rArr |AM| = sqrt(4^(2)+1^(2)+4^(2)) = sqrt(33)`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides of a triangle ABC. The length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(288)

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(33) (B) sqrt(45) (C) sqrt(18) (D) sqrt(720

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(45)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -(VECTORS ) Exercise 2 ( Topical problems )
  1. The vectors a=2hati+hatj-2hatk, b=hati+hatj. If c is a vector such tha...

    Text Solution

    |

  2. If [[axxb,bxxc, c xxa]]=lambda[[a, b, c]]^(2), then lambda is equal t...

    Text Solution

    |

  3. The vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the ...

    Text Solution

    |

  4. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  5. If veca=1/(sqrt(10))(3hati+hatk),vecb=1/7(2hati+3hatj-6hatk), then the...

    Text Solution

    |

  6. If the vectots phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  7. Let a,b and c be three non-zero vectors which are pairwise non-colline...

    Text Solution

    |

  8. Let veca=hatj-hatk and vecc=hati-hatj-hatk. Then the vector vecb satis...

    Text Solution

    |

  9. If the vectors veca=hati-hatj+2hatk, vecb=2hati+4hatj+hatk and vecc=la...

    Text Solution

    |

  10. Let veca=hati+hatj+hatk, vecb=hati-hatj+2hatk and vecc=xhati+(x-2)hatj...

    Text Solution

    |

  11. The value of 'a' for which the points A, B,C with position vectors ...

    Text Solution

    |

  12. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  13. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  14. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  15. If bar a,bar b,bar c are non coplanar vectors and lambda is a real nu...

    Text Solution

    |

  16. If a,b and c are three non-zero vectors such that no two of these are ...

    Text Solution

    |

  17. A paticle acted on by constant forces 4hati=hatj-3hatk and 3hati+hatj-...

    Text Solution

    |

  18. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  19. The value of [[a-b , b-c ,c-a]] is equal to

    Text Solution

    |

  20. If hat(i)+hat(j), hat(j)+hat(k), hat(i)+hat(k) are the position vector...

    Text Solution

    |