Home
Class 12
MATHS
If ABCDEF is a regular hexagon then vec(...

If ABCDEF is a regular hexagon then `vec(AD)+vec(EB)+vec(FC)` equals :

A

0

B

2AB

C

3AB

D

4AB

Text Solution

Verified by Experts

The correct Answer is:
D

ABCDEF is a regular hexogen. We know from the hexagon that AD is parallel to BC
`implies AD=2BC`
Similarly, EB is parallel to FA
`implies EB = 2FA`
and FC is parallel to AB
`impliesFC =2AB`
Thus, `AD+EB +FC =2BC+2FA+2AB`
`=2(FA+AB+BC)`
`=2(FC=2(2AB)=4AB)`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If ABCDEF is a regular hexagon,them vec AD+vec EB+vec FC equals 2vec AB b.vec 0 c.3vec AB d.4vec AB

If ABCDEF is a regular hexagon , then A vec D + E vec B + F vec C equals

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec(0)

In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If ABCDEF is a regular hexagon with vec AB=vec a and vec BC=vec b, then vec CE equals

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDEF is a regular hexagon, prove that AD+EB+FC=4AB .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -(VECTORS ) Exercise 2 ( Topical problems )
  1. If vec r.vec a=vec r.vec b=vec r.vec c=0 where a, b, c are non-coplan...

    Text Solution

    |

  2. If |veca|=3 and -1 <= k <= 2, then |kveca| lies in the interval

    Text Solution

    |

  3. If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

    Text Solution

    |

  4. If a=hat(i)+hat(j)+hat(k), b=hat(i)+3hat(j)+5hat(k) and c=7hat(i)+9hat...

    Text Solution

    |

  5. A vector of magnitude sqrt2 coplanar with hati+hatj+2hati and hati+2ha...

    Text Solution

    |

  6. The angle between the vectors a=2hati+2hatj-hatk and b=6hati-3hatj...

    Text Solution

    |

  7. If a and b are unit vectors, then the greatest value of |a+b|+|a-b| is

    Text Solution

    |

  8. If a, b and c are non-coplanar vectors and r is a real number, then th...

    Text Solution

    |

  9. Vectors a and b are such that |a|=1,|b|=4 and a.b=2." If " c=2axxb-3b,...

    Text Solution

    |

  10. Three vectors a=hati+hatj-hatk, b=-hati+2hatj+hatk and c=-hati+2hatj-h...

    Text Solution

    |

  11. If a parallelogram ABCD, |AB|=a, |AD|=b and |AC|=C, then DA. AB is equ...

    Text Solution

    |

  12. Let a=a(1)hati+a(3)hatk, b=b(1)hati+b(3)hatk, c=c(1)hati+c(2)hatj+c(3)...

    Text Solution

    |

  13. If hatu and hatv are unit vectors and theta is the acute angle between...

    Text Solution

    |

  14. If the sum of two unit vectors is a unit vector, then the magnitude of...

    Text Solution

    |

  15. The three vectors a, b and c with magnitude 3, 4 and 5 respectively an...

    Text Solution

    |

  16. The vectors (a,a+1, a+2)(a+3, a+4, a+5)(a+6, a+7, a+8) are coplanar fo...

    Text Solution

    |

  17. If a=hati+2hatk+3hatk, b=-hati+2hatj = hatk and c=3hati+hatj, then p s...

    Text Solution

    |

  18. Let a=hati+2hatj+hatk, b=hati-hatj+hatk and c=hati+hatj-hatk. A vector...

    Text Solution

    |

  19. If a=lambdahati+2hatj-3hatk, b=2hati+lambdahatj-hatk, c=hati+2hatj+hat...

    Text Solution

    |

  20. Three point A, B and C with position vectors a(1)=3hati-2hatj-hatk, a(...

    Text Solution

    |