Home
Class 12
MATHS
if the product of n matrices [(1,1),(0,1...

if the product of n matrices `[(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)]` the value of n is equal to

A

26

B

27

C

377

D

378

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that the product of the matrices \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \ldots, \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \] equals \[ \begin{pmatrix} 1 & 378 \\ 0 & 1 \end{pmatrix}. \] ### Step 1: Understand the Matrix Product The product of two matrices of the form \[ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a + b \\ 0 & 1 \end{pmatrix} \] indicates that when we multiply these matrices, the resulting matrix will still be of the form \[ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \] where \( c \) is the sum of the values \( a \) and \( b \). ### Step 2: Calculate the Product of Matrices Now, we can generalize this to \( n \) matrices. The product of the first \( n \) matrices will yield: \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 + 2 + 3 + \ldots + n \\ 0 & 1 \end{pmatrix}. \] ### Step 3: Use the Formula for the Sum of the First n Natural Numbers The sum of the first \( n \) natural numbers is given by the formula: \[ S_n = \frac{n(n + 1)}{2}. \] Thus, the product of the matrices results in: \[ \begin{pmatrix} 1 & \frac{n(n + 1)}{2} \\ 0 & 1 \end{pmatrix}. \] ### Step 4: Set Up the Equation We want this to equal \[ \begin{pmatrix} 1 & 378 \\ 0 & 1 \end{pmatrix}. \] This gives us the equation: \[ \frac{n(n + 1)}{2} = 378. \] ### Step 5: Solve for n Multiplying both sides by 2 gives: \[ n(n + 1) = 756. \] This can be rearranged to: \[ n^2 + n - 756 = 0. \] ### Step 6: Factor the Quadratic Equation To solve the quadratic equation \( n^2 + n - 756 = 0 \), we can factor it: \[ (n - 27)(n + 28) = 0. \] Setting each factor to zero gives: \[ n - 27 = 0 \quad \text{or} \quad n + 28 = 0. \] Thus, \( n = 27 \) or \( n = -28 \). Since \( n \) must be a positive integer, we have: \[ n = 27. \] ### Conclusion The value of \( n \) is \( 27 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If the product of n matrices [[1,10,1]][[1,20,1]][[1,30,1]]......[[1,n0,1]] is equal to the matrix ,[[1,3780,1]] then the value of n is equal to

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If [{:(1,3),(0,1):}]A=[{:(1,-1),(0,1):}] , then what is the matrix A ?

If A=[(2,1),(0,x)] and A^(-1)=[(1/2,1/6),(0,1/x)] , then the value of x is equal to