Home
Class 12
MATHS
If A=[(2,2,1),(1,3,1),(1,2,2)] and the ...

If `A=[(2,2,1),(1,3,1),(1,2,2)]` and the sum of eigen values of A is m anda product of eigen values of A is n, then m+n is equal to

A

10

B

12

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum and product of the eigenvalues of the matrix \( A \) given as: \[ A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} \] ### Step 1: Find the Characteristic Polynomial The eigenvalues of a matrix can be found by solving the characteristic polynomial, which is given by: \[ \text{det}(A - \lambda I) = 0 \] Where \( I \) is the identity matrix and \( \lambda \) is the eigenvalue. ### Step 2: Set Up the Matrix \( A - \lambda I \) The identity matrix \( I \) for a \( 3 \times 3 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{pmatrix} \] ### Step 3: Calculate the Determinant Now we need to calculate the determinant of \( A - \lambda I \): \[ \text{det}(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix, we expand it: \[ = (2 - \lambda) \begin{vmatrix} 3 - \lambda & 1 \\ 2 & 2 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ 1 & 2 - \lambda \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 - \lambda \\ 1 & 2 \end{vmatrix} \] Calculating the \( 2 \times 2 \) determinants: 1. \( \begin{vmatrix} 3 - \lambda & 1 \\ 2 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(2 - \lambda) - 2 = 6 - 5\lambda + \lambda^2 - 2 = \lambda^2 - 5\lambda + 4 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 1(2 - \lambda) - 1 = 2 - \lambda - 1 = 1 - \lambda \) 3. \( \begin{vmatrix} 1 & 3 - \lambda \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - 1(3 - \lambda) = 2 - (3 - \lambda) = \lambda - 1 \) ### Step 4: Substitute Back into the Determinant Now substituting these back into the determinant: \[ = (2 - \lambda)(\lambda^2 - 5\lambda + 4) - 2(1 - \lambda) + (\lambda - 1) \] Expanding this: \[ = (2 - \lambda)(\lambda^2 - 5\lambda + 4) - 2 + 2\lambda + \lambda - 1 \] ### Step 5: Collect Like Terms After expanding and simplifying, we will get a cubic polynomial in \( \lambda \): \[ -\lambda^3 + 7\lambda^2 - 11\lambda + 5 = 0 \] ### Step 6: Find the Sum and Product of Eigenvalues From Vieta's formulas, we know: - The sum of the roots (eigenvalues) \( m = -\frac{b}{a} = 7 \) - The product of the roots (eigenvalues) \( n = -\frac{d}{a} = 5 \) ### Step 7: Calculate \( m + n \) Finally, we find: \[ m + n = 7 + 5 = 12 \] ### Final Answer Thus, the value of \( m + n \) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 3|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If ([3,27,5])A([-1,1-2,1])=([2,-10,4]) then sum of the eigen values of A

The eigen value of A=[[1,-42,-3]] are

If 3,-2 are the eigen values of a non-singular matrix A and |A|=4, find the eigen values of adj(A)

The value of sum_(n=1)^(oo)(1)/(2n(2n+1)) is equal to

If A=[[-2,1],[-5,4]] then the Eigen values of of B, where B= 3A^(-1)+3A+2I ,is

Which of the following matericeshave eigen values as 1 and -1 ?

Let m=(a)/(2)-b ,such that a^(2)-b^(4)=19 where a,b in N and n is the number of values of k for which sum of roots of equation x^(2)-2kx+2k-1=0 is equal to sum of square of its roots,then value of (3|m|+n) equals