Home
Class 12
MATHS
The rank of the matrix [[-1,2,5],[2,-4,a...

The rank of the matrix `[[-1,2,5],[2,-4,a-4],[1,-2,a+1]]` is (where a = - 6)

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the rank of the matrix \[ A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & -4 & a - 4 \\ 1 & -2 & a + 1 \end{bmatrix} \] where \( a = -6 \), we will follow these steps: ### Step 1: Substitute the value of \( a \) First, we substitute \( a = -6 \) into the matrix: \[ A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & -4 & -6 - 4 \\ 1 & -2 & -6 + 1 \end{bmatrix} \] This simplifies to: \[ A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & -4 & -10 \\ 1 & -2 & -5 \end{bmatrix} \] ### Step 2: Perform row operations to simplify the matrix We will now perform row operations to bring the matrix to row echelon form. 1. **Row Operation 1**: Replace \( R_2 \) with \( R_2 + 2R_1 \): \[ R_2 = R_2 + 2R_1 \Rightarrow R_2 = \begin{bmatrix} 2 & -4 & -10 \end{bmatrix} + 2 \cdot \begin{bmatrix} -1 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \] Now the matrix looks like: \[ A = \begin{bmatrix} -1 & 2 & 5 \\ 0 & 0 & 0 \\ 1 & -2 & -5 \end{bmatrix} \] 2. **Row Operation 2**: Replace \( R_3 \) with \( R_3 + R_1 \): \[ R_3 = R_3 + R_1 \Rightarrow R_3 = \begin{bmatrix} 1 & -2 & -5 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \] Now the matrix is: \[ A = \begin{bmatrix} -1 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] ### Step 3: Determine the rank The rank of a matrix is defined as the maximum number of linearly independent rows. In the final matrix, we can see that there is only **one non-zero row**. Thus, the rank of the matrix \( A \) is: \[ \text{Rank}(A) = 1 \] ### Final Answer The rank of the matrix is **1**. ---

To find the rank of the matrix \[ A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & -4 & a - 4 \\ 1 & -2 & a + 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If the rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is 1 then the value of a is (A) -1 (B) 2 (C) -6 (D) 4

The rank of the matrix A=[[-1,2,3-2,4,6]] is

1) Find the rank of the matrix [[1,3,2],[2,5,4],[1,2,2]]

3.Find the rank of the matrix [[1,2,3],[-2,4,-9],[3,6,4]]

Find the rank of the matrix [[1,4,-1],[2,3,0],[0,1,2]]

Find the rank of the matrix, A=[[1,2,3],[1,4,2],[2,6,5]]

Q.3.Find the rank of the matrix [[1,1,-1],[2,-3,4],[3,-2,3]]

Find the rank of the matrix: A=[[3,2,3],[2,4,9],[5,6,6]]

4.a) Find the rank of the matrix [[2,5,3],[3,1,2],[1,2,1]]

(b) Find the rank of the matrix [[1,2,3],[1,2,4],[0,0,0]]

ARIHANT MATHS-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If a square matrix A is involutory, then A^(2n+1) is equal to

    Text Solution

    |

  2. If [[cos theta,sin theta],[-sin theta,cos theta]], then lim (n rarr i...

    Text Solution

    |

  3. The rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is (where a = ...

    Text Solution

    |

  4. A is an involuntary matrix given by A=[0 1-1 4-3 4 3-3 4] , then the i...

    Text Solution

    |

  5. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  6. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  7. If matrix A = [a(ij)](3xx3), matrix B= [b(ij)](3xx3) where a(ij) + ...

    Text Solution

    |

  8. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  9. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  10. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  11. if A and B are squares matrices such that A^(2006)=O and A B=A+B, then...

    Text Solution

    |

  12. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  13. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  14. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  15. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  16. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  17. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  18. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  19. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  20. If A is a skew-symmetric matrix of order 2 and B, C are matrices [[1...

    Text Solution

    |