Home
Class 12
MATHS
If f (theta) = [[cos^(2) theta , cos the...

If `f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ` "then " f (pi/7) ` is

A

symmetric

B

skew-symmetric

C

singular

D

non-singular

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the matrix \( f(\theta) \) at \( \theta = \frac{\pi}{7} \). The matrix is defined as: \[ f(\theta) = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0 \end{bmatrix} \] ### Step 1: Substitute \( \theta = \frac{\pi}{7} \) We will substitute \( \theta \) with \( \frac{\pi}{7} \) in the matrix. \[ f\left(\frac{\pi}{7}\right) = \begin{bmatrix} \cos^2\left(\frac{\pi}{7}\right) & \cos\left(\frac{\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) & -\sin\left(\frac{\pi}{7}\right) \\ \cos\left(\frac{\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) & \sin^2\left(\frac{\pi}{7}\right) & \cos\left(\frac{\pi}{7}\right) \\ \sin\left(\frac{\pi}{7}\right) & -\cos\left(\frac{\pi}{7}\right) & 0 \end{bmatrix} \] ### Step 2: Calculate the elements of the matrix Now we need to compute the values of \( \cos\left(\frac{\pi}{7}\right) \) and \( \sin\left(\frac{\pi}{7}\right) \). For the sake of this solution, we will denote: - \( c = \cos\left(\frac{\pi}{7}\right) \) - \( s = \sin\left(\frac{\pi}{7}\right) \) Thus, we can rewrite the matrix as: \[ f\left(\frac{\pi}{7}\right) = \begin{bmatrix} c^2 & cs & -s \\ cs & s^2 & c \\ s & -c & 0 \end{bmatrix} \] ### Step 3: Check properties of the matrix To determine if the matrix is symmetric, skew-symmetric, singular, or non-singular, we will compute the determinant of the matrix. ### Step 4: Calculate the determinant Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(f) = c^2 \left( s^2 \cdot 0 - c \cdot (-c) \right) - cs \left( cs \cdot 0 - s \cdot (-s) \right) + (-s) \left( cs \cdot (-c) - s^2 \cdot c \right) \] Calculating each term: 1. The first term simplifies to \( c^2(c^2) = c^4 \). 2. The second term simplifies to \( cs(s^2) = cs^3 \). 3. The third term simplifies to \( -s(-c^2s - s^2c) = s(c^2s + s^2c) = sc^2s + s^3c \). Putting it all together: \[ \text{det}(f) = c^4 - cs^3 + sc^2s + s^3c = c^4 + s^3c \] ### Step 5: Evaluate the determinant at \( \theta = \frac{\pi}{7} \) Since we know that \( c^2 + s^2 = 1 \), we can conclude that \( \text{det}(f) \) is not equal to zero, indicating that the matrix is non-singular. ### Final Result Thus, we conclude that: \[ f\left(\frac{\pi}{7}\right) \text{ is a non-singular matrix.} \]

To solve the problem, we need to evaluate the matrix \( f(\theta) \) at \( \theta = \frac{\pi}{7} \). The matrix is defined as: \[ f(\theta) = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If f(theta)=|[cos^(2)theta,cos theta sin theta,-sin theta],[cos theta sin theta,sin^(2)theta,cos theta],[sin theta,-cos theta,0]| , then f((pi)/(12))

cos theta+sin theta=cos2 theta+sin2 theta

If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

Simplify: cos theta[cos theta sin theta-sin theta cos theta]+sin theta[sin theta-cos theta cos theta sin theta]

[[ Simplify :cos thetacos theta,sin theta-sin theta,cos theta]]+sin theta[[sin theta,-cos thetacos theta,sin theta]]

Simplify cos theta[(cos theta,sin theta),(-sin theta,cos theta)]+sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

cos theta-cos3 theta+cos5 theta-cos7 theta=4sin theta sin4 theta cos2 theta

(cos theta + sin theta) ^ (2) + (cos theta-sin theta) ^ (2) =

If cos theta+sin theta=sqrt(2), then cos theta-sin theta=

ARIHANT MATHS-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A = [a(ij)](3xx3), matrix B= [b(ij)](3xx3) where a(ij) + ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B, then...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. If A is a skew-symmetric matrix of order 2 and B, C are matrices [[1...

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Let three matrices A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-...

    Text Solution

    |

  18. If A is non-singular and (A-2I) (A-4I) = O, then 1/6 A + 4/3 A^(-1) ...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A = [[x,3,2],[1,y,4],[2,2,z]]cdot If xyz = 60 and 8...

    Text Solution

    |