Home
Class 12
MATHS
If A=[[cos theta , sin theta],[sin theta...

If `A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1]], C=ABA^(T),` then
`A^(T) C^(n) A, n in I^(+)` equals to

A

`[[-n,1],[1,0]]`

B

`[[1,-n],[0,1]]`

C

`[[0,1],[1,-n]]`

D

`[[1,0],[-n,1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning presented in the video transcript, ensuring clarity and detail at each stage. ### Step 1: Define the Matrices We have the matrices: \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \] ### Step 2: Calculate \( A^T \) The transpose of matrix \( A \) is: \[ A^T = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}^T = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] Since \( A \) is symmetric, \( A^T = A \). ### Step 3: Calculate \( C = A B A^T \) Now we compute \( C \): \[ C = A B A^T \] First, calculate \( AB \): \[ AB = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta - \sin \theta & \sin \theta \\ \sin \theta + \cos \theta & -\cos \theta \end{bmatrix} \] Next, we multiply this result by \( A^T \): \[ C = \begin{bmatrix} \cos \theta - \sin \theta & \sin \theta \\ \sin \theta + \cos \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] Calculating \( C \): 1. First row, first column: \[ (\cos \theta - \sin \theta) \cos \theta + \sin \theta \sin \theta = \cos^2 \theta - \sin \theta \cos \theta + \sin^2 \theta = 1 - \sin \theta \cos \theta \] 2. First row, second column: \[ (\cos \theta - \sin \theta) \sin \theta + \sin \theta (-\cos \theta) = \sin \theta \cos \theta - \sin^2 \theta - \sin \theta \cos \theta = -\sin^2 \theta \] 3. Second row, first column: \[ (\sin \theta + \cos \theta) \cos \theta + (-\cos \theta)(\sin \theta) = \sin \theta \cos \theta + \cos^2 \theta - \cos \theta \sin \theta = \cos^2 \theta \] 4. Second row, second column: \[ (\sin \theta + \cos \theta) \sin \theta + (-\cos \theta)(-\cos \theta) = \sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta = 1 + \sin \theta \cos \theta \] Thus, we have: \[ C = \begin{bmatrix} 1 - \sin \theta \cos \theta & -\sin^2 \theta \\ \cos^2 \theta & 1 + \sin \theta \cos \theta \end{bmatrix} \] ### Step 4: Calculate \( A^T C^n A \) We need to find \( A^T C^n A \). Since \( A^T = A \), we can write: \[ A^T C^n A = A C^n A \] Using the property \( A^T C = B A^T \): \[ A C = B A \] Thus, we can express \( A C^n A \) recursively: \[ A C^n A = A (C^{n-1} C) A = A C^{n-1} (B A) \] Continuing this process, we find: \[ A C^n A = B^n A \] ### Step 5: Calculate \( B^n A \) Now we compute \( B^n \): \[ B^n = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \] Thus, \[ A^T C^n A = B^n A = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] Calculating this product: 1. First row: \[ \begin{bmatrix} 1 \cdot \cos \theta + 0 \cdot \sin \theta & 1 \cdot \sin \theta + 0 \cdot (-\cos \theta) \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix} \] 2. Second row: \[ \begin{bmatrix} -n \cdot \cos \theta + 1 \cdot \sin \theta & -n \cdot \sin \theta + 1 \cdot (-\cos \theta) \end{bmatrix} = \begin{bmatrix} \sin \theta - n \cos \theta & -n \sin \theta - \cos \theta \end{bmatrix} \] Thus, the final result is: \[ A^T C^n A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta - n \cos \theta & -n \sin \theta - \cos \theta \end{bmatrix} \] ### Final Answer The final expression for \( A^T C^n A \) is: \[ \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \]

To solve the problem step by step, we will follow the reasoning presented in the video transcript, ensuring clarity and detail at each stage. ### Step 1: Define the Matrices We have the matrices: \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(costheta,sintheta),(sintheta,-costheta):}] , B=[{:(1,0),(-1,1):}] , C=ABA^(T) , then A^(T)C^(n)A equals to (n in I^(+))

If A=[[0,-tan(theta/2)],[tan(theta/2),0]](theta!=npi,n in Z),B=[[costheta,-sintheta],[sintheta,costheta]] and I=[[1,0],[0,1]], then the value of (2I)/(costheta+1) is equal to

IfA=[[cos theta,sin theta-sin theta,cos theta]], then lim_(x>oo)(1)/(n)A^(n) is

If sin theta + costheta = m and sin theta - cos theta = n , then

If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,1)] then {f(theta)^(-1)} is equal to

If sin theta+cos theta=1, then sin theta cos theta is equal to :

If A= [[cos theta,-sin theta],[sin theta,cos theta]] ,then Adj A is (a) [[cos theta,-sin theta],[cos theta,sin theta]] (b) [[1,0],[0,1]] (c) [[cos theta,sin theta],[-sin theta,cos theta]] (d) [[-1,0],[0,-1]]

If A=[(-cos theta, -sin theta),(-cos theta, sin theta)] and A(adjA)=lamda[(1,0),(0,1)] then lamda is equal to

If A=[[cos theta,sin theta-sin theta,cos theta]] then prove that A^(n)=[[cos n theta,sin n theta-sin n theta,cos n theta]],n in N

a cos theta+b sin theta+c=0a cos theta+b_(1)sin theta+c_(1)=0

ARIHANT MATHS-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A = [a(ij)](3xx3), matrix B= [b(ij)](3xx3) where a(ij) + ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B, then...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. If A is a skew-symmetric matrix of order 2 and B, C are matrices [[1...

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Let three matrices A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-...

    Text Solution

    |

  18. If A is non-singular and (A-2I) (A-4I) = O, then 1/6 A + 4/3 A^(-1) ...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A = [[x,3,2],[1,y,4],[2,2,z]]cdot If xyz = 60 and 8...

    Text Solution

    |