Home
Class 12
MATHS
If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1...

If `A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]]` then

A

`a = 1, b = -1`

B

`a = 2, b = -1/2`

C

`a = -1, b=1`

D

`a=1/2, b=1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) in the given matrices \( A \) and \( A^{-1} \). We will use the property that the product of a matrix and its inverse is the identity matrix \( I \). Given: \[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \] \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & b \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} \] ### Step 1: Compute the product \( A \cdot A^{-1} \) We need to multiply \( A \) and \( A^{-1} \) and set the result equal to the identity matrix \( I \). \[ A \cdot A^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & b \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} \] ### Step 2: Calculate each element of the resulting matrix 1. **First row**: - First element: \( 0 \cdot \frac{1}{2} + 1 \cdot (-4) + 2 \cdot \frac{5}{2} = -4 + 5 = 1 \) - Second element: \( 0 \cdot (-\frac{1}{2}) + 1 \cdot 3 + 2 \cdot (-\frac{3}{2}) = 3 - 3 = 0 \) - Third element: \( 0 \cdot \frac{1}{2} + 1 \cdot b + 2 \cdot \frac{1}{2} = b + 1 \) 2. **Second row**: - First element: \( 1 \cdot \frac{1}{2} + 2 \cdot (-4) + 3 \cdot \frac{5}{2} = \frac{1}{2} - 8 + \frac{15}{2} = \frac{1 + 15 - 16}{2} = 0 \) - Second element: \( 1 \cdot (-\frac{1}{2}) + 2 \cdot 3 + 3 \cdot (-\frac{3}{2}) = -\frac{1}{2} + 6 - \frac{9}{2} = 0 \) - Third element: \( 1 \cdot \frac{1}{2} + 2 \cdot b + 3 \cdot \frac{1}{2} = \frac{1}{2} + 2b + \frac{3}{2} = 2 + 2b \) 3. **Third row**: - First element: \( 3 \cdot \frac{1}{2} + a \cdot (-4) + 1 \cdot \frac{5}{2} = \frac{3}{2} - 4a + \frac{5}{2} = 4 - 4a \) - Second element: \( 3 \cdot (-\frac{1}{2}) + a \cdot 3 + 1 \cdot (-\frac{3}{2}) = -\frac{3}{2} + 3a - \frac{3}{2} = 3a - 3 \) - Third element: \( 3 \cdot \frac{1}{2} + a \cdot b + 1 \cdot \frac{1}{2} = \frac{3}{2} + ab + \frac{1}{2} = 2 + ab \) ### Step 3: Set the resulting matrix equal to the identity matrix The resulting matrix from \( A \cdot A^{-1} \) should equal: \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] From the calculations, we have: 1. \( b + 1 = 0 \) (from the first row, third column) 2. \( 2 + 2b = 0 \) (from the second row, third column) 3. \( 4 - 4a = 0 \) (from the third row, first column) ### Step 4: Solve the equations 1. From \( b + 1 = 0 \): \[ b = -1 \] 2. From \( 2 + 2b = 0 \): \[ 2 - 2 = 0 \quad \text{(This is consistent with } b = -1\text{)} \] 3. From \( 4 - 4a = 0 \): \[ 4a = 4 \implies a = 1 \] ### Final Values Thus, we have: \[ a = 1, \quad b = -1 \] ### Conclusion The values of \( a \) and \( b \) are: - \( a = 1 \) - \( b = -1 \)

To solve the problem, we need to find the values of \( a \) and \( b \) in the given matrices \( A \) and \( A^{-1} \). We will use the property that the product of a matrix and its inverse is the identity matrix \( I \). Given: \[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \] \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & b \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),(5//2,-3//2,1//2)] , then the values of a and c are equal to

[{:(,0,1,2),(,1,2,3),(,3,a,1):}],=A^(-1)=[{:(,1//2,-1//2,1//2),(,-4,3,c),(,5//2,-3//2,1//2):}] then find vales of a&c.

If A=[[0,1,3],[1,2,x],[2,3,1]] and A^(-1)=[[(1)/(2),-4,(5)/(2)],[-(1)/(2),3,-(3)/(2)],[(1)/(2),y,(1)/(2)]] . Find x,y

If A=[0 1 2 1 2 3 3a1]a n d A_1=[1//2 12//12//-4 3c5//2-3//2 1//2] , then the values of a anti c are equal to 1,1 b. 1,-1 c. 1,2 d. -1,1

If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]] , then |A^(-1)|=

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

If A=[[1,2,3],[0,-1,4],[3,1,5]] and B=[[2,-1,0],[1,4,3],[3,0,-2]], verify that (AB)^-1=B^-1A^-1.

A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2, 1]] , then

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

ARIHANT MATHS-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A = [a(ij)](3xx3), matrix B= [b(ij)](3xx3) where a(ij) + ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B, then...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. If A is a skew-symmetric matrix of order 2 and B, C are matrices [[1...

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Let three matrices A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-...

    Text Solution

    |

  18. If A is non-singular and (A-2I) (A-4I) = O, then 1/6 A + 4/3 A^(-1) ...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A = [[x,3,2],[1,y,4],[2,2,z]]cdot If xyz = 60 and 8...

    Text Solution

    |