Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] is an o...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` is an orthogonal matrix and `abc = lambda (lt0).`
The value of ` a^(3) + b^(3)+c^(3)` is

A

`lambda`

B

`2lambda`

C

`3lambda`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 \) given that the matrix \[ A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] is an orthogonal matrix and \( abc = \lambda \) (where \( \lambda < 0 \)). ### Step 1: Understand Orthogonal Matrix Condition An orthogonal matrix \( A \) satisfies the condition: \[ A A^T = I \] where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. ### Step 2: Calculate \( A A^T \) First, we compute \( A A^T \): \[ A^T = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] Now, multiplying \( A \) by \( A^T \): \[ A A^T = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] Calculating each element: - The (1,1) entry: \[ a^2 + b^2 + c^2 \] - The (1,2) entry: \[ ab + bc + ca \] - The (2,1) entry: \[ ab + bc + ca \] - The (2,2) entry: \[ b^2 + c^2 + a^2 \] - The (3,3) entry: \[ c^2 + a^2 + b^2 \] Thus, we have: \[ A A^T = \begin{bmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & b^2 + c^2 + a^2 & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & c^2 + a^2 + b^2 \end{bmatrix} \] ### Step 3: Set Equal to Identity Matrix Since \( A A^T = I \), we equate: \[ \begin{bmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & b^2 + c^2 + a^2 & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & c^2 + a^2 + b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] From this, we get the equations: 1. \( a^2 + b^2 + c^2 = 1 \) 2. \( ab + bc + ca = 0 \) ### Step 4: Find \( a + b + c \) Using the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Substituting the known values: \[ (a + b + c)^2 = 1 + 2(0) = 1 \] Thus, \[ a + b + c = \pm 1 \] ### Step 5: Use the Identity for Cubes We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Substituting the known values: \[ a^3 + b^3 + c^3 - 3\lambda = (a + b + c)(1 - 0) \] Thus, \[ a^3 + b^3 + c^3 - 3\lambda = a + b + c \] ### Step 6: Solve for \( a^3 + b^3 + c^3 \) Now we can express \( a^3 + b^3 + c^3 \): \[ a^3 + b^3 + c^3 = a + b + c + 3\lambda \] Substituting \( a + b + c = \pm 1 \): \[ a^3 + b^3 + c^3 = \pm 1 + 3\lambda \] ### Final Answer Thus, the value of \( a^3 + b^3 + c^3 \) is: \[ \boxed{\pm 1 + 3\lambda} \]

To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 \) given that the matrix \[ A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The equation whose roots are a, b, c, is

If a+b +c =0 then value of a^(3) +b^(3) +c^(3) is

If a+b+c=0, then write the value of a^(3)+b^(3)+c^(3)

If a + b + c = 0 , then the value of a^3 + b^3 + c^3 is :

If a+b+c=0 ,then what is the value of a^(3)+b^(3)+c^(3)?

ARIHANT MATHS-MATRICES -Exercise (Passage Based Questions)
  1. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  2. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  3. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  4. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  5. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  6. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  7. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  8. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  9. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  10. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  11. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  12. If A is symmetric and B skew- symmetric matrix and A + B is non-sing...

    Text Solution

    |

  13. If A is a symmetric and B skew symmetric matrix and (A+ B) is non-sing...

    Text Solution

    |

  14. If A is symmetric and B skew- symmetric matrix and A + B is non-sin...

    Text Solution

    |

  15. Let A be a squarre matrix of order of order 3 satisfies the matrix equ...

    Text Solution

    |

  16. Let A be a squarre matrix of order of order 3 satisfies the matrix equ...

    Text Solution

    |