Home
Class 12
MATHS
If A=[[cos alpha, -sin alpha] , [sin alp...

If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`alpha =(2pi)/3`

`because BAB=A^(-1)`
`rArr ABAB= I`
`rArr (AB)^(2) = I`
Now, `AB= [[cos (alpha+2beta),sin (alpha+2beta)],[sin(alpha+2beta),-cos(alpha + 2beta)]]`
and `(AB)^(2) = (AB) (AB) = [[1,0],[0,1]]= I [because (AB)(AB)=I]`
Also, `BA^(4)B=A^(-1)`
or `A^(4) B= B^(-1) A^(-1) =(AB)^(-1) = AB`
or`A^(4) = A " "...(i)`
Now, `A^(2) = [[cos alpha,-sin alpha],[sin alpha,cos alpha]][[cos alpha,-sin alpha],[sin alpha,cos alpha]]`
`=[[cos 2alpha,-sin 2alpha],[sin 2alpha,cos 2alpha]]`
Similarly, `A^(4)=[[cos 4alpha,-sin 4alpha],[sin 4alpha,cos4alpha]]`
Hence, from Eq. (i)
`[[cos 4alpha,-sin 4alpha],[sin 4alpha,cos4alpha]]=[[cos alpha,-sin alpha],[sin alpha,cos alpha]]`
or `4 alpha = 2pi + alpha`
` therefore alpha = (2pi)/3`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=[[cos alpha,-sin alphasin alpha,cos alpha]],B=[[cos2 beta,sin2 betasin alpha,cos alpha]],B=[[cos2 beta,sin2 betasin2 beta,-cos2 beta]] where 0

If A,=[[cos alpha,-sin alphasin alpha,cos alpha]] and B=,[[cos beta,cos alpha]] and B=[[cos beta,-sin betasin beta,cos betasin beta,cos beta]] then show that AB=BA

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =