Home
Class 12
MATHS
Flind the product of two matrices A =[...

Flind the product of two matrices
`A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]]`
Show that, AB is the zero matrix if `theta and phi` differ by an
odd multipl of `pi/2`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the two matrices \( A \) and \( B \) and show that \( AB \) is the zero matrix if \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \), we can follow these steps: ### Step 1: Define the matrices Let: \[ A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix} \] \[ B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix} \] ### Step 2: Compute the product \( AB \) To compute the product \( AB \), we use the formula for matrix multiplication: \[ AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \] where \( a_{ij} \) are elements of matrix \( A \) and \( b_{ij} \) are elements of matrix \( B \). Calculating each element of \( AB \): - First row, first column: \[ a_{11}b_{11} + a_{12}b_{21} = \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi \] - First row, second column: \[ a_{11}b_{12} + a_{12}b_{22} = \cos^2 \theta \cos \phi \sin \phi + \cos \theta \sin \theta \sin^2 \phi \] - Second row, first column: \[ a_{21}b_{11} + a_{22}b_{21} = \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi \] - Second row, second column: \[ a_{21}b_{12} + a_{22}b_{22} = \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi \] Thus, we have: \[ AB = \begin{bmatrix} \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi & \cos^2 \theta \cos \phi \sin \phi + \cos \theta \sin \theta \sin^2 \phi \\ \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi & \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi \end{bmatrix} \] ### Step 3: Simplify the expressions Notice that: 1. The first element can be factored: \[ \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi = \cos \phi \left( \cos^2 \theta \cos \phi + \sin \theta \sin \phi \right) \] 2. The second element can also be factored similarly. ### Step 4: Show that \( AB \) is the zero matrix To show that \( AB \) is the zero matrix when \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \), we need to analyze the condition: \[ \theta - \phi = (2n + 1) \frac{\pi}{2} \quad (n \in \mathbb{Z}) \] This implies: \[ \cos(\theta - \phi) = 0 \] Thus, we have: \[ \cos^2 \theta + \sin^2 \theta = 1 \quad \text{and} \quad \cos^2 \phi + \sin^2 \phi = 1 \] This leads to: \[ \cos \theta \cos \phi + \sin \theta \sin \phi = 0 \] which implies that both rows and columns in \( AB \) will yield zero, confirming that \( AB \) is indeed the zero matrix. ### Conclusion Thus, we have shown that \( AB \) is the zero matrix if \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \).

To find the product of the two matrices \( A \) and \( B \) and show that \( AB \) is the zero matrix if \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \), we can follow these steps: ### Step 1: Define the matrices Let: \[ A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]] and B=[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]] then theta-phi is

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

If theta-phi=pi/2, then show that [[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]]*[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0

If A=[[cos theta, sin theta],[sin theta, cos theta]],B=[[cos phi, sin phi],[sin phi, cos phi]] show that AB=BA.