Home
Class 12
MATHS
Show that the matrix A = [[1 , a,alpha ,...

Show that the matrix `A = [[1 , a,alpha , aalpha],[1, b, beta, b beta ],[1 ,c,gamma ,cgamma ]]` is of renk 3
provided no two of a, b, c are equal and no two of `alpha ,beta,gamma `
are equal.

Text Solution

Verified by Experts

We have , `A= [[1,a, alpha , aalpha],[1, b ,beta,b beta ],[1 ,c, gamma,cgamma]]`
Applying `R_(2) rarr R_(2) - R_(1) and R_(3) rarr R_(3) -R_(1),` we get
`A= [[1,a, alpha , aalpha],[0, b-a ,beta-alpha,b beta-aalpha ],[0,c-a, gamma-alpha,cgamma-aalpha]]`
Applying `C_(2) rarr C_(2) - aC_(1), C_(3) rarr C_(3)- alphaC_(1) and C_(4) rarr C_(4) - a alpha C_(1), ` we get
`A= [[1,0, 0 , 0],[0, b-a ,beta-alpha,b beta-aalpha ],[0,c-a, gamma-alpha,cgamma-aalpha]]`
Applying ` C_(4) rarr C_(4) - alpha C_(2) - bC_(3)` we get
`A= [[1,0, 0 , 0],[0, b-a ,beta-alpha,0 ],[0,c-a, gamma-alpha,(c-b)(gamma-alpha)]]`
For `p(A)= 3`
`c- a ne 0 , gamma - alpha ne 0, c-bne 0, b-a ne0 , beta - alpha ne 0 `
i.e.,`ane b, bnec, cnea and alpha ne beta, beta ne gamma , gamma ne alpha `
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Show that |[1,alpha,alpha^2],[1,beta,beta^2],[1,gamma,gamma^2]|=(alpha-beta)(beta-gamma)(gamma-alpha)

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha is equal to beta, but alpha^(3)=19 alpha+1,beta^(3)=19 beta+1,gamma^(3)=19 gamma+1, then the equation whose roots are 1/ alpha,1/ beta,1/ gamma is

Evaluate the following: |[1,1,1],[alpha, beta, gamma],[beta gamma, gama alpha, alpha beta]|

Let alpha,beta,gamma be the complex roots of x^(3)-1=0 then,alpha+beta+gamma is equal to