Home
Class 12
MATHS
When the determinant |{:(cos2x,sin^(2)x,...

When the determinant `|{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}|` is expanded in powers of sin x , the constant term in than or equal to expression is

A

1

B

0

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If the determinant |(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)| is expanded in powers of sin x, then the constant term is

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

Find the maximum value of abs((sin^2x,1+cos^2x,cos2x),(1+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,sin2x))

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

ARIHANT MATHS-DETERMINANTS -Exercise (Single Option Correct Type Questions)
  1. If |{:(a,b-c,c+b),(a+c,b,c-a),(a-b,a+b,c):}|=0 the line ax +by +c=0 p...

    Text Solution

    |

  2. If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the...

    Text Solution

    |

  3. When the determinant |{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)...

    Text Solution

    |

  4. If [] denotes the greatest integer less than or equal to the real numb...

    Text Solution

    |

  5. The determinant |{:(y^(2),-xy,x^(2)),(a,b,c),(a',b',c'):}| is equal to

    Text Solution

    |

  6. If A,B and C are angle of a triangle of a triangle ,the value of |{:(...

    Text Solution

    |

  7. If |{:(x^(n),x^(n+2),x^(2n)),(1,x^(a),a),(x^(n+5),x^(a+6),x^(2n+5)):}|...

    Text Solution

    |

  8. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  9. If a(1),b(1),c(1),a(2),b(2),c(2) "and" a(3),b(3),c(3) are three digit ...

    Text Solution

    |

  10. If a,b,and c are sides of Delta ABC such that |{:(c,bcosB+alphabeta,ac...

    Text Solution

    |

  11. If x(1),x(2) "and" y(1),y(2) are the roots of the equations 3x^(2) ...

    Text Solution

    |

  12. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  13. The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-be...

    Text Solution

    |

  14. If f(x), h(x) are polynomials of degree 4 and |(f(x), g(x),h(x)),(a, b...

    Text Solution

    |

  15. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  16. If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+...

    Text Solution

    |

  17. Let a ,b , c in R such that no two of them are equal and satisfy |2a ...

    Text Solution

    |

  18. The number of positive integral solutions of the equation |(x^3+1,x^2y...

    Text Solution

    |

  19. If f(x)=ax^(2)+bx+c,a,b,c in R and eqation f(x)-x=0 has imaginary roo...

    Text Solution

    |

  20. If the system of equtions 2x-y+z=0,x-2y+z=0, tx-y+2z=0 has infinitel...

    Text Solution

    |