Home
Class 12
MATHS
Given (f(x) =log(10) x and g(x) = e^(pii...

Given (f(x) `=log_(10)` x and g(x) = `e^(piix)` .
`phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}|` the value of `phi` (10), is

A

1

B

2

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \phi(10) \), we will first evaluate the functions \( f(x) \) and \( g(x) \) at \( x = 10 \) and then substitute these values into the determinant structure defined by \( \phi(x) \). ### Step 1: Evaluate \( f(10) \) Given: \[ f(x) = \log_{10} x \] Substituting \( x = 10 \): \[ f(10) = \log_{10} 10 = 1 \] ### Step 2: Evaluate \( g(10) \) Given: \[ g(x) = e^{\pi i x} \] Substituting \( x = 10 \): \[ g(10) = e^{\pi i \cdot 10} = e^{10 \pi i} \] Using Euler's formula \( e^{ix} = \cos x + i \sin x \): \[ g(10) = \cos(10\pi) + i \sin(10\pi) \] Since \( \cos(10\pi) = 1 \) and \( \sin(10\pi) = 0 \): \[ g(10) = 1 \] ### Step 3: Evaluate \( f(10^2) \) Substituting \( x = 10^2 = 100 \): \[ f(10^2) = f(100) = \log_{10} 100 = \log_{10} (10^2) = 2 \] ### Step 4: Evaluate \( g(10^2) \) Substituting \( x = 10^2 = 100 \): \[ g(10^2) = g(100) = e^{\pi i \cdot 100} = e^{100 \pi i} \] Using Euler's formula: \[ g(100) = \cos(100\pi) + i \sin(100\pi) \] Since \( \cos(100\pi) = 1 \) and \( \sin(100\pi) = 0 \): \[ g(100) = 1 \] ### Step 5: Evaluate \( f(10^3) \) Substituting \( x = 10^3 = 1000 \): \[ f(10^3) = f(1000) = \log_{10} 1000 = \log_{10} (10^3) = 3 \] ### Step 6: Evaluate \( g(10^3) \) Substituting \( x = 10^3 = 1000 \): \[ g(10^3) = g(1000) = e^{\pi i \cdot 1000} = e^{1000 \pi i} \] Using Euler's formula: \[ g(1000) = \cos(1000\pi) + i \sin(1000\pi) \] Since \( \cos(1000\pi) = 1 \) and \( \sin(1000\pi) = 0 \): \[ g(1000) = 1 \] ### Step 7: Construct the determinant for \( \phi(10) \) Now we can substitute these values into the determinant: \[ \phi(10) = \begin{vmatrix} f(10) g(10) & (f(10))^{g(10)} & 1 \\ f(10^2) g(10^2) & (f(10^2))^{g(10^2)} & 0 \\ f(10^3) g(10^3) & (f(10^3))^{g(10^3)} & 1 \end{vmatrix} \] Substituting the values: \[ \phi(10) = \begin{vmatrix} 1 \cdot 1 & 1^1 & 1 \\ 2 \cdot 1 & 2^1 & 0 \\ 3 \cdot 1 & 3^1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 0 \\ 3 & 3 & 1 \end{vmatrix} \] ### Step 8: Calculate the determinant Using the determinant formula: \[ \text{Det} = 1 \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} - 1 \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 2 \\ 3 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = 1(2 \cdot 1 - 0 \cdot 3) - 1(2 \cdot 1 - 0 \cdot 3) + 1(2 \cdot 3 - 2 \cdot 3) \] \[ = 1(2) - 1(2) + 1(0) = 2 - 2 + 0 = 0 \] ### Final Result Thus, the value of \( \phi(10) \) is: \[ \phi(10) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

phi(x)=f(x)*g(x)" and f'(x)*g'(x)=k ,then (2k)/(f(x)*g(x))=

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

Let f(x)=ln x o* g(x)=e^(x). if f_(1)(x)=f(|x|),f_(2)(x)=f(|x|),f_(3)(x)=|f(|x|)|,g_(1)(x)=(1)/(g(|x|))

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f (x) =(x^(2) -1) " and " g (x) =(2x +3) " then " (g o f) (x) =?

If the function _(x)f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x), then the value of g'(1) is

ARIHANT MATHS-DETERMINANTS -Exercise (Single Option Correct Type Questions)
  1. If A,B and C are angle of a triangle of a triangle ,the value of |{:(...

    Text Solution

    |

  2. If |{:(x^(n),x^(n+2),x^(2n)),(1,x^(a),a),(x^(n+5),x^(a+6),x^(2n+5)):}|...

    Text Solution

    |

  3. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  4. If a(1),b(1),c(1),a(2),b(2),c(2) "and" a(3),b(3),c(3) are three digit ...

    Text Solution

    |

  5. If a,b,and c are sides of Delta ABC such that |{:(c,bcosB+alphabeta,ac...

    Text Solution

    |

  6. If x(1),x(2) "and" y(1),y(2) are the roots of the equations 3x^(2) ...

    Text Solution

    |

  7. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  8. The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-be...

    Text Solution

    |

  9. If f(x), h(x) are polynomials of degree 4 and |(f(x), g(x),h(x)),(a, b...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+...

    Text Solution

    |

  12. Let a ,b , c in R such that no two of them are equal and satisfy |2a ...

    Text Solution

    |

  13. The number of positive integral solutions of the equation |(x^3+1,x^2y...

    Text Solution

    |

  14. If f(x)=ax^(2)+bx+c,a,b,c in R and eqation f(x)-x=0 has imaginary roo...

    Text Solution

    |

  15. If the system of equtions 2x-y+z=0,x-2y+z=0, tx-y+2z=0 has infinitel...

    Text Solution

    |

  16. if (1+ax+bx^(2))^(4)=a(0) +a(1)x+a(2)x^(2)+…..+a(8)x^(8), where a,b,a(...

    Text Solution

    |

  17. Given (f(x) =log(10) x and g(x) = e^(piix) . phi (x) =|{:(f(x).g(x),...

    Text Solution

    |

  18. The value of the determinant |(1,(alpha^(2x)-alpha^(-2x))^2,(alpha^(2...

    Text Solution

    |

  19. If a,b and c are non-zero real numbers and if the equation (a-1)x=y+z,...

    Text Solution

    |

  20. the set of equations lambdax-y+(cos 0) z=0,3x+y+2z=0 (cos 0) x+y+2z...

    Text Solution

    |