Home
Class 12
MATHS
The value of the determinant |{:(sqrt(...

The value of the determinant `|{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}|` is (where i=`sqrt(-1)`

A

complex

B

real

C

irrational

D

rational

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} \sqrt{6} & 2i & 3 + \sqrt{6}i \\ \sqrt{12} & \sqrt{3} + \sqrt{8}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{18} & \sqrt{2} + \sqrt{12}i & \sqrt{27} + 2i \end{vmatrix} \] we will follow these steps: ### Step 1: Factor out common terms from the first column We notice that we can factor out \(\sqrt{6}\) from the first column. This gives us: \[ D = \sqrt{6} \begin{vmatrix} 1 & 2i & 3 + \sqrt{6}i \\ \sqrt{2} & \sqrt{3} + \sqrt{8}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{3} & \sqrt{2} + \sqrt{12}i & \sqrt{27} + 2i \end{vmatrix} \] ### Step 2: Simplify the second and third rows Next, we simplify the second and third rows by performing row operations. We will perform \(R_2 - \sqrt{2}R_1\) and \(R_3 - \sqrt{3}R_1\): \[ D = \sqrt{6} \begin{vmatrix} 1 & 2i & 3 + \sqrt{6}i \\ 0 & (\sqrt{3} + \sqrt{8}i - 2i\sqrt{2}) & (3\sqrt{2} + \sqrt{6}i - (3 + \sqrt{6}i)\sqrt{2}) \\ 0 & (\sqrt{2} + \sqrt{12}i - 2i\sqrt{3}) & (\sqrt{27} + 2i - (3 + \sqrt{6}i)\sqrt{3}) \end{vmatrix} \] ### Step 3: Calculate the determinant of the 2x2 matrix Now we will calculate the determinant of the 2x2 matrix formed by the second and third rows. Let’s denote the new matrix as: \[ \begin{vmatrix} 0 & A \\ 0 & B \end{vmatrix} \] where \(A\) and \(B\) are the entries we calculated in the previous step. The determinant of this matrix is \(0\) since the first column is entirely zeros. ### Step 4: Final calculation Thus, we have: \[ D = \sqrt{6} \cdot 0 = 0 \] ### Conclusion The value of the determinant is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

sqrt(i)-sqrt(-i)=sqrt(2)

sqrt(i)+sqrt(-i)=sqrt(2)

Knowledge Check

  • The value of the determinant |(sqrt6,2i,3+sqrt6),(sqrt12,sqrt3+sqrt8i,3sqrt2+sqrt6i),(sqrt18,sqrt2+sqrt12i,sqrt27+2i)| is

    A
    complex
    B
    real
    C
    irrational
    D
    rational
  • Similar Questions

    Explore conceptually related problems

    If Delta=|(sqrt6,2i,3+sqrt6),(sqrt12,sqrt3+sqrt8i,3sqrt2+sqrt6i),(sqrt18,sqrt2+sqrt12i,sqrt27+2i)| then Delta is (i^2=-1)

    (i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

    ((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

    ( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

    (sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(2))

    ([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

    ((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))