Home
Class 12
MATHS
Let f(x)=|[sec^2x,1,1],[cos^2x,cos^2x,co...

Let `f(x)=|[sec^2x,1,1],[cos^2x,cos^2x,cosec^2x],[1,cos^2x,cot^2x]|`, then

A

`f_(-pi//4)^(pi//4)f(x)dx=(1)/(16)(3pi+8)`

B

`f"'(pi)/(2)=0`

C

maximum value of f(x) is 1

D

minimum value of f(x) is 0

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|[sec^2x,1,1],[cos^2x,cos^2x,cosec^2x],[1,cos^2x,cot^2x]| AA x in R , where maximum value of f(x) is m ,then [m] equals ([-] represents the greatest integer function)

Let f(x)=det[[sec^(2)x,1,1cos^(2)x,cos^(2)x,cos ec^(2)x1,cos^(2)x,cot^(2)x]], then

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....

Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cosec^(2)x),(1,cos^(2)x,cos^(2)x):}| then find the value of f_(0)^(pi//2) f(x) dx.

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

Let f(x)=|sec x cos x sec^(2)x+cot x cos ecx cos^(2)x cos^(2)x cos ec^(2)x1cos^(2)x cos^(2)x Prove that int_(0)^((pi)/(2))f(x)dx=-(pi)/(4)-(8)/(15)

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then