Home
Class 12
MATHS
Let alpha,beta "and " gamma are three di...

Let `alpha,beta "and " gamma` are three distinct roots of
`|{:(x-1,-6,2),(-6,x-2,-4),(2,-4,x-6):}|` =0 the value of `((1)/(alpha)+(1)/(beta)+(1)/(gamma))^(-1)` is

Text Solution

Verified by Experts

The correct Answer is:
9
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma be the roots of the equation x(1+x^(2))+x^(2)(6+x)+2=0 then the value of (1)/(alpha)+(1)/(beta)+(1)/(gamma)=

If alpha,beta,gamma are the zeroes of the polynomial f(x)=2x^(3)+6x^(2)-4x+9, find the value of (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)

If alpha, beta and gamma are three ral roots of the equatin x ^(3) -6x ^(2)+5x-1 =0, then the value of alpha ^(4) + beta ^(4) + gamma ^(4) is:

If alpha,beta and gamma are the roots of x^(3)-x^(2)-1=0, then value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If alpha,beta,gamma are the roots of equation 3^(3)-2x^(2)+3x-5=0, then the value of (alpha-1)^(-1)+(beta-1)^(-1)+(gamma-1)^(-1) is equal to

If alpha,beta,gamma are the roots of the equation x^(3)+2x^(2)+3x+3=0, then the value of ((alpha)/(alpha+1))^(3)+((beta)/(beta+1))^(3)+((gamma)/(gamma+1))^(3) is

If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(2) + x + 3)=0 , then the value of alpha^(3) + beta^(3) + gamma^(3) is:

If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=