Home
Class 12
MATHS
The value of the determinant |{:(1,1,1,1...

The value of the determinant `|{:(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20):}|` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix} \] we can use row operations to simplify the determinant. ### Step 1: Apply Row Operations We will perform the following row operations: - \( R_2 \leftarrow R_2 - R_1 \) - \( R_3 \leftarrow R_3 - R_1 \) - \( R_4 \leftarrow R_4 - R_1 \) This gives us: \[ D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 5 & 9 \\ 0 & 3 & 9 & 19 \end{vmatrix} \] ### Step 2: Expand the Determinant Now we can expand the determinant along the first column: \[ D = 1 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 9 \\ 3 & 9 & 19 \end{vmatrix} \] ### Step 3: Calculate the 3x3 Determinant Next, we calculate the determinant of the 3x3 matrix: \[ \begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 9 \\ 3 & 9 & 19 \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix, we have: \[ = 1 \cdot (5 \cdot 19 - 9 \cdot 9) - 2 \cdot (2 \cdot 19 - 9 \cdot 3) + 3 \cdot (2 \cdot 9 - 5 \cdot 3) \] Calculating each term: 1. First term: \( 5 \cdot 19 - 9 \cdot 9 = 95 - 81 = 14 \) 2. Second term: \( 2 \cdot 19 - 9 \cdot 3 = 38 - 27 = 11 \) (multiplied by -2 gives \(-22\)) 3. Third term: \( 2 \cdot 9 - 5 \cdot 3 = 18 - 15 = 3 \) (multiplied by 3 gives \(9\)) Putting it all together: \[ = 1 \cdot 14 - 22 + 9 = 14 - 22 + 9 = 1 \] ### Final Result Thus, the value of the determinant is \[ D = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

The value of the deterimant |(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20)| is equal to

Find the value of the determinant |{:(1,,1,,1,,1),(1,,2,,3,,4),(1,,3,,6,,10),(1,,4,,10,,20):}|

The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}| is

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

The value of the determinant |[1,2,4],[1,3,6],[1,4,9]| is

Find the value of the "determinant" |{:(3,4,7),(-1,6,5),(2,8,10):}|

Find the value of the determinant det[[1,2,3,41,3,6,101,4,10,20]]

If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

If lambda "and" mu are the cofactors of 3 and -2 respectively in the determinant |{:(1,0,-2),(3,-1,2),(4,5,6):}| the value of lambda+mu is