Home
Class 12
MATHS
Statement -1 The value of determinant ...

Statement -1 The value of determinant
`|{:(sinpi,cos(x+(pi)/(4)),tan(-(pi)/(4))),(sin(x-(pi)/(4)),-cos((pi)/(2)),In((x)/(y))),(cot((pi)/(4)+x),In((y)/(x)),tan(pi)):}|` is zero
Statement -2 The value of skew -symetric determinat of odd order equals zero.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

The value of int_(0)^((pi)/(4))ln cos((pi)/(4)+x)^(cot((pi)/(4)-x))dx is

(tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tan x)/(1-tan x))^(2)

int_(-(pi)/(4))^((pi)/(4))(2 pi+sin2 pi x)/(2-cos2x)dx

If x=tan ((pi)/(4)+A)+tan(B-(pi)/(4)) and y=tan ((pi)/(4)+A)*tan (B-(pi)/(4)) then (x)/(1-y)=

(sec2x-tan2x) equals a tan(x-(pi)/(4))b)tan((pi)/(4)-x)c cot(x-(pi)/(4))d tan^(2)(x+(pi)/(4))

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

The expression (tan(x-(pi)/(2))cos((3 pi)/(2)+x)-sin^(3)((7 pi)/(2)-x))/(cos(x-(pi)/(2))tan((3 pi)/(2)+x)) is equal to

The value of int_((pi)/(6))^((pi)/(4))(dx)/(sin2x*(tan^(5)x+cot^(5)x)) is (A) (pi)/(40)(B)(pi)/(60)(C)(pi)/(120) (D) (pi)/(20)

Minimum value of the expression (1)/(cos^(2)((pi)/(4)+x)+sin^(2)((pi)/(4)-x))