Home
Class 12
MATHS
Prove that the points (0, 0), (3, (pi)/(...

Prove that the points `(0, 0), (3, (pi)/(2))` and `(3, (pi)/(6))` are the vertices of an equilateral triangle.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the points \( (0, 0) \), \( (3, \frac{\pi}{2}) \), and \( (3, \frac{\pi}{6}) \) are the vertices of an equilateral triangle, we will first convert the polar coordinates to Cartesian coordinates and then calculate the distances between the points. ### Step 1: Convert Polar Coordinates to Cartesian Coordinates 1. **Point A**: \( (0, 0) \) - Cartesian coordinates: \( (x, y) = (0, 0) \) 2. **Point B**: \( (3, \frac{\pi}{2}) \) - \( x = r \cos(\theta) = 3 \cos\left(\frac{\pi}{2}\right) = 3 \cdot 0 = 0 \) - \( y = r \sin(\theta) = 3 \sin\left(\frac{\pi}{2}\right) = 3 \cdot 1 = 3 \) - Cartesian coordinates: \( (0, 3) \) 3. **Point C**: \( (3, \frac{\pi}{6}) \) - \( x = r \cos(\theta) = 3 \cos\left(\frac{\pi}{6}\right) = 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \) - \( y = r \sin(\theta) = 3 \sin\left(\frac{\pi}{6}\right) = 3 \cdot \frac{1}{2} = \frac{3}{2} \) - Cartesian coordinates: \( \left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right) \) ### Step 2: Calculate the Distances Between the Points 1. **Distance AB**: - \( A(0, 0) \) and \( B(0, 3) \) - \( d_{AB} = \sqrt{(0 - 0)^2 + (3 - 0)^2} = \sqrt{0 + 3^2} = \sqrt{9} = 3 \) 2. **Distance AC**: - \( A(0, 0) \) and \( C\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right) \) - \( d_{AC} = \sqrt{\left(\frac{3\sqrt{3}}{2} - 0\right)^2 + \left(\frac{3}{2} - 0\right)^2} \) - \( = \sqrt{\left(\frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{3}{2}\right)^2} \) - \( = \sqrt{\frac{27}{4} + \frac{9}{4}} = \sqrt{\frac{36}{4}} = \sqrt{9} = 3 \) 3. **Distance BC**: - \( B(0, 3) \) and \( C\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right) \) - \( d_{BC} = \sqrt{\left(\frac{3\sqrt{3}}{2} - 0\right)^2 + \left(\frac{3}{2} - 3\right)^2} \) - \( = \sqrt{\left(\frac{3\sqrt{3}}{2}\right)^2 + \left(-\frac{3}{2}\right)^2} \) - \( = \sqrt{\frac{27}{4} + \frac{9}{4}} = \sqrt{\frac{36}{4}} = \sqrt{9} = 3 \) ### Conclusion Since all three distances \( d_{AB} \), \( d_{AC} \), and \( d_{BC} \) are equal to \( 3 \), the points \( (0, 0) \), \( (0, 3) \), and \( \left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right) \) form an equilateral triangle.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

Show that the points O(0, 0), A(3, sqrt(3)) "and "B(3, -sqrt(3)) are the vertices of an equilateral triangle. Find the area of this triangle.

Prove that the points (a, a), (-a, -a) and (-asqrt(3), asqrt(3)) are the vertices of an equilateral triangle.

Show that the points (-3, -3), (3, 3) and (-3sqrt(3), 3sqrt(3)) are the vertices of an equilateral triangle.

Prove that the points (2a, 4a), (2a, 6a) and (2a+ sqrt(3) a, 5a) are the vertices of an equilateral triangle.

Prove that the points A(2, 4), B(2, 6) and C(2 + sqrt(3) , 5) are the vertices of an equilateral triangle.

Prove that the points (0, -1), (6, 7), (-2, 3) and (8, 3) are the vertices of a rectangle.

Prove that the points (4, 8), (0, 2) (3, 0) and (7, 6) are the vertices of a rectangle.

Prove that the points (4, 8), (0, 2), (3, 0) and (7, 6) are the vertices of a rectangle.

Prove that the points (2a,4a),(2a,6a) and (2a+sqrt(3)a,5a) are the vertices of an equilaterall triangle whose side is 2a

If the points (0,0),(2,2sqrt(3)), and (p,q) are the verticesof an equilateral triangle,then (p,q) is