Home
Class 12
MATHS
If D(-2, 3), E (4, -3) and F (4, 5) are ...

If D(-2, 3), E (4, -3) and F (4, 5) are the mid-points of the sides BC, CA and AB of the sides BC, CA and AB of triangle ABC, then find `sqrt((|AG|^(2)+|BG|^(2)-|CG|^(2)))` where, G is the centroid of `Delta ABC`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \(\sqrt{|AG|^2 + |BG|^2 - |CG|^2}\) where \(G\) is the centroid of triangle \(ABC\) and \(D(-2, 3)\), \(E(4, -3)\), and \(F(4, 5)\) are the midpoints of sides \(BC\), \(CA\), and \(AB\) respectively. ### Step-by-Step Solution 1. **Identify Coordinates of Midpoints**: - The coordinates of midpoints are given as: - \(D(-2, 3)\) - \(E(4, -3)\) - \(F(4, 5)\) 2. **Set Up Equations for Vertices**: - Let the coordinates of vertices \(A\), \(B\), and \(C\) be \(A(x_1, y_1)\), \(B(x_2, y_2)\), \(C(x_3, y_3)\). - From the midpoint \(D\): \[ D = \left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right) = (-2, 3) \] This gives us two equations: \[ \frac{x_2 + x_3}{2} = -2 \quad \Rightarrow \quad x_2 + x_3 = -4 \quad (1) \] \[ \frac{y_2 + y_3}{2} = 3 \quad \Rightarrow \quad y_2 + y_3 = 6 \quad (2) \] - From the midpoint \(E\): \[ E = \left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right) = (4, -3) \] This gives us: \[ \frac{x_1 + x_3}{2} = 4 \quad \Rightarrow \quad x_1 + x_3 = 8 \quad (3) \] \[ \frac{y_1 + y_3}{2} = -3 \quad \Rightarrow \quad y_1 + y_3 = -6 \quad (4) \] - From the midpoint \(F\): \[ F = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = (4, 5) \] This gives us: \[ \frac{x_1 + x_2}{2} = 4 \quad \Rightarrow \quad x_1 + x_2 = 8 \quad (5) \] \[ \frac{y_1 + y_2}{2} = 5 \quad \Rightarrow \quad y_1 + y_2 = 10 \quad (6) \] 3. **Solve the System of Equations**: - From equations (1) and (3): \[ x_2 + x_3 = -4 \quad (1) \] \[ x_1 + x_3 = 8 \quad (3) \] Substituting \(x_3 = -4 - x_2\) into (3): \[ x_1 - 4 - x_2 = 8 \quad \Rightarrow \quad x_1 - x_2 = 12 \quad (7) \] - From equations (5) and (7): \[ x_1 + x_2 = 8 \quad (5) \] Adding (5) and (7): \[ 2x_1 = 20 \quad \Rightarrow \quad x_1 = 10 \] Substituting back to find \(x_2\): \[ 10 + x_2 = 8 \quad \Rightarrow \quad x_2 = -2 \] Using (1) to find \(x_3\): \[ -2 + x_3 = -4 \quad \Rightarrow \quad x_3 = -2 \] - Now for \(y\) coordinates using (2), (4), and (6): \[ y_2 + y_3 = 6 \quad (2) \] \[ y_1 + y_3 = -6 \quad (4) \] Substitute \(y_3 = 6 - y_2\) into (4): \[ y_1 + 6 - y_2 = -6 \quad \Rightarrow \quad y_1 - y_2 = -12 \quad (8) \] From (6): \[ y_1 + y_2 = 10 \quad (6) \] Adding (6) and (8): \[ 2y_1 = -2 \quad \Rightarrow \quad y_1 = -1 \] Substituting back to find \(y_2\): \[ -1 + y_2 = 10 \quad \Rightarrow \quad y_2 = 11 \] Using (2) to find \(y_3\): \[ 11 + y_3 = 6 \quad \Rightarrow \quad y_3 = -5 \] 4. **Coordinates of Vertices**: - The coordinates of the vertices are: - \(A(10, -1)\) - \(B(-2, 11)\) - \(C(-2, -5)\) 5. **Find the Centroid \(G\)**: - The coordinates of the centroid \(G\) are given by: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) = \left(\frac{10 - 2 - 2}{3}, \frac{-1 + 11 - 5}{3}\right) = \left(\frac{6}{3}, \frac{5}{3}\right) = (2, \frac{5}{3}) \] 6. **Calculate Distances**: - Calculate \(AG\), \(BG\), and \(CG\): \[ |AG| = \sqrt{(10 - 2)^2 + \left(-1 - \frac{5}{3}\right)^2} = \sqrt{8^2 + \left(-\frac{8}{3}\right)^2} = \sqrt{64 + \frac{64}{9}} = \sqrt{\frac{640}{9}} = \frac{8\sqrt{10}}{3} \] \[ |BG| = \sqrt{(-2 - 2)^2 + \left(11 - \frac{5}{3}\right)^2} = \sqrt{(-4)^2 + \left(\frac{28}{3}\right)^2} = \sqrt{16 + \frac{784}{9}} = \sqrt{\frac{144 + 784}{9}} = \sqrt{\frac{928}{9}} = \frac{4\sqrt{58}}{3} \] \[ |CG| = \sqrt{(-2 - 2)^2 + \left(-5 - \frac{5}{3}\right)^2} = \sqrt{(-4)^2 + \left(-\frac{20}{3}\right)^2} = \sqrt{16 + \frac{400}{9}} = \sqrt{\frac{144 + 400}{9}} = \sqrt{\frac{544}{9}} = \frac{4\sqrt{34}}{3} \] 7. **Final Calculation**: - Now substitute into the expression: \[ \sqrt{|AG|^2 + |BG|^2 - |CG|^2} = \sqrt{\left(\frac{8\sqrt{10}}{3}\right)^2 + \left(\frac{4\sqrt{58}}{3}\right)^2 - \left(\frac{4\sqrt{34}}{3}\right)^2} \] \[ = \sqrt{\frac{64 \cdot 10 + 16 \cdot 58 - 16 \cdot 34}{9}} = \sqrt{\frac{640 + 928 - 544}{9}} = \sqrt{\frac{1024}{9}} = \frac{32}{3} \] Thus, the final answer is: \[ \frac{32}{3} \]
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

If D,E and F be the middle points of the sides BC,CA and AB of the Delta ABC, then AD+BE+CF is

D, E and F are the mid-points of the sides BC, CA and AB of a triangle ABC. Show that BDEF is a parallelogram

If D(2,1,0) ,E(2,0,0) and F(0,1,0) are mid points of the sides BC,CA and AB of triangle ABC respectively, then the centroid of triangle ABC is

If D(3,-2) , E(-3,1) and F(4,-3) are the mid-points of the sides BC, CA and AB respectively of Delta ABC , find the co-ordinates of point A , B and C .

If (2,1,3)(3,1,5) and (1,2,4) are the mid points of the sides BC ,CA, AB of Delta ABC respectively then the perimeter of Delta ABC is

Let D(3, -2), E(-3, 1) and F(4, -3) be the midpoints of the sides BC, CA and AB respectively of Delta ABC . Then, find the coordinates the vertices A, B and C.

D,E and F are respectively the mid-points of the sides BC,CA and AB of a /_ABC. Show that (i) BDEF is a parallelogram

D, E, F are the mid points of BC, CA and AB of Delta ABC . If AD and BE intersect in G, then AG + BG + CG is equal to