Home
Class 12
MATHS
What does the equation 2x^2+4x y-5y^2+20...

What does the equation `2x^2+4x y-5y^2+20 x-22 y-14=0` become when referred to the rectangular axes through the point `(-2,-3)` , the new axes being inclined at an angle at `45^0` with the old axes?

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

What does the equation 2x^(2)+4xy-5y^(2)+20x-22y-14=0 become when referred to the rectangular axes through the point (-2,-3), the new axes being inclined at an angle at 45^(@) with the old axes?

What does the equation (x-a)^(2)+(y-b)^(2)=r^(2) become when the axes are transferred to parallel axes through the pint (a-c,b)?

Find the equations t the straight lines passing through the point (2,3) and inclined at an angle of 45^0 to the line \ 3x+y-5=0.

If the line y=4x-5 touches the curve y^(2)=ax^(3)+b at the point (2,3), then 7a+2b=0

The equation 4xy-3x^(2)=a^(2) become when the axes are turned through an angle tan^(-1)2 is

If the line y=4x -5 touches the curve y^(2) =ax^(3) +b at the point (2,3) then a+b is

If the line y=4x-5 touches the curve y^(2)=ax^(3)+b at the point (2,3) , then : (a, b)-=

If the equation 4x^2+2xy+2y^2 - 1=0 becomes 5X^2+Y^2=1 when the axes are rotated through an angle of t degrees then sum of the digits of t is

If the axes are translated to the point (-2,-3) then the equation x^2+3y^2+4x+18y+30=0 transforms to