Home
Class 12
MATHS
The distance between the two parallel li...

The distance between the two parallel lines is 1 unit. A point A is chosen to lie between the lines at a distance 'd' from one of them Triangle ABC is equilateral with B on one line and C on the other parallel line. The length of the side of the equilateral triangle is

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(sqrt(3))sqrt((a^(2)-a+1))` units
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The distance between the parallel lines y=x +a, y =x+ b is

The distance between two parallel lines is unity. A point P lies between the lines at a distance a from one of them. Find the length of a side of an equilateral triangle PQR vertex Q of which lies on one of the parallel lines and vertex R lies on the other line.

The distance between two parallel lines can be taken out by the formula

Shortest distance between two parallel lines in vector + cartesian form

ABC is an equilateral triangle such that the vertices B and C lie on two parallel at a distance 6. If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle.

A point P is inside an equilateral triangle if the distance of P from sides 8,10,12 then the length of the side of the triangle is

The equation of the lines through the origin which form two of the sides of the equilateral triangle having x=2 as the third side is

An equilateral triangle ABC has its centroid at the origin and the base BC lies along the line x+y=1. Area of the equilateral Delta ABC is

If an isosceles triangle has more than one line of symmetry, then it need not be an equilateral triangle.

If an isosceles triangle has more than one line of symmetry, then it must be an equilateral triangle.