Home
Class 12
MATHS
int0^pi(x dx)/(1+cosalpha*sinx)=(pialpha...

`int_0^pi(x dx)/(1+cosalpha*sinx)=(pialpha)/(sinalpha), 0 < alpha < pi`

A

`(pi)/(sin alpha)`

B

`(pi alpha)/( sin alpha)`

C

`(alpha)/( sin alpha)`

D

`(sin alpha)/(alpha)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^pi (xdx)/(1+cosalphasinx),0ltaltpi is (A) (pia)/sinalpha (B) (pia)/(1+sinalpha) (C) (pia)/cosalpha (D) (pia)/(1+cosalpha)

solve int_0^pi (x sinx)/(1+cosx) dx=

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

int_(0)^(pi)(dx)/((1+sinx))=?

If 0^(@)ltalphalt90^(@) , then solve the equation (sinalpha)/(1-cosalpha)+(sinalpha)/(1+cosalpha)=4 .

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

Find the inverse of each of the matrices (if it exists) given in [{:(1,0,0),(0,cosalpha,sinalpha),(0,sinalpha,-cosalpha):}]

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)