Home
Class 12
MATHS
Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l...

Let `l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2))` is equal to

A

`(3)/(e)`

B

`(3)/(e)`

C

3e

D

`(1)/(3e)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

l_(1)=int_(0)^(1)(1+x^(8))/(1+x^(4))dx and l_(2)=int_(0)^(1)(1+x^(9))/(1+x^(3))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(x))/((2+e^(x)))dx

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx

int_(0)^(1)x^2e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then