Home
Class 12
MATHS
If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f...

If f(x)`=(e^(2))/(1+e^(x)),I_(1)=overset(f(a))underset(f(-a))int xg{x(1-x)}dx` and `I_(2)=overset(f(a))underset(f(-a))int g{x(1-x)}dx`, where g is not identify function. Then the value of `I_(2)//I_(1)`, is

A

1

B

-3

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x) =(e^(2))/(1+e^(x)),I_(1)=int_(f(-a))^(f(a)) xg{x(1-x)}dx and I_(2)=int_(f(-a))^(-f(-a)) g{x(1-x)}dx , where g is not identify function. Then the value of I_(2)//I_(1) , is

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

f(x)=(e^(x))/(1+e^(x)),I_(1)=int(f(-a))^(f(a))xg(a(1-x)dx, and I_(2)=int_(f(-a))^(f(a))g(x(1-x))dx then the value of (I_(2))/(I_(1)) is (a)-1(b)-2(c)2(d)1g(x(1-x))dx

Prove that int_-a^a f(x) dx=0 , where 'f' is an odd function. And, evaluate, int_-1^1 log[(2-x)/(2+x)] dx

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =